1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
5

Find f (0) and find x when f (x) =4

Mathematics
1 answer:
Anuta_ua [19.1K]3 years ago
4 0
At x = 0, y-coordinate is at -4 so that means f(0) = -4

Now for f(x) = 4, we need to find any x-coordinates such that y-coordinates is 4.

There are two possible answer: x = -8 and x = 8

So x = -8, 8

Hope this helps.
You might be interested in
For which pair of functions is the vertex of g(x) 2 units to the right of the
Grace [21]

Answer:

D

Step-by-step explanation:

Given f(x) then f(x + a) is a horizontal translation of f(x)

• If a > 0 then shift left by a units

• If a < 0 then shift right by a units

Here the shift is 2 units to the right

Then

f(x) = x² and g(x) = (x - 2)² → D

7 0
3 years ago
I didn’t get the answer
kakasveta [241]

Answer:

uh why not..?

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Ill mark brainliest for correct answer
zmey [24]
1/5(6+3+1)^2
1/5 x 10^2
1/5 x 100
answer: 20
6 0
3 years ago
Read 2 more answers
What does it mean to isolate the variable?
emmainna [20.7K]

To isolate the variable means to get it by itself.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify<br><br> a+a+a=<br> 4b-b<br> 3x2+x2
    9·1 answer
  • You have a lead ball with a mass of 420 g. The density of lead is 10.5 g/cm square. What is the volume of the ball?
    9·1 answer
  • What are some possible outcomes to -7
    12·1 answer
  • The graph below does not represent a function because it fails the vertical-line test.
    15·1 answer
  • Yummy Donuts gave three
    13·2 answers
  • The sum of 9/10 and 5/6​
    15·2 answers
  • you are renting a moving truck for a day. There is a dailyfee of $20 and a charge of $0.75 per mile. Your budget allows a maximu
    12·1 answer
  • Phil is riding his bike. He rides 46 miles in 4 hours, 57.5 miles in 5 hours, and 69 miles in 6 hours. Find the constant of prop
    13·1 answer
  • Can pls someone help me I need help
    12·1 answer
  • What is the value of x
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!