Answer:
m∠N = 51°
m∠M = 31°
m∠O = 98°
Step-by-step explanation:
It is given that ΔMNO is an isosceles triangle with base NM.
m∠N = (4x + 7)° and m∠M = (2x + 29)°
By the property of an isosceles triangle,
Two legs of an isosceles triangle are equal in measure.
ON ≅ OM
And angles opposite to these equal sides measure the same.
m∠N = m∠M
(4x + 7) = (2x + 29)
4x - 2x = 29 - 7
2x = 22
x = 11
m∠N = (4x + 7)° = 51°
m∠M = (2x + 9)° = 31°
m∠O = 180° - (m∠N + m∠M)
= 180° - (51° + 31°)
= 180° - 82°
= 98°
The ratio of the areas is the ratio of the squares of the sides ( which is 10:15 or 2:3) so the answer is
2^2 : 3^2 = 4:9.
The ratio of the perimeters = ratio of corresponding side = 2:3.
I'd say increasing each side by 5 increases the volume by a factor of 125 because 5*5*5 = 125.
Example:
A 4*5*6 prism has a volume of 120
Increasing each side by a factor of five
(20*25*30) = 15,000
15,000 / 120 = 125
To get started, we will use the general formula for bacteria growth/decay problems:

where:
A_{f} = Final amount
A_{i} = Initial amount
k = growth rate constant
t = time
For doubling problems, the general formula can be shortened to:

Now, we can use the shortened formula to calculate the growth rate constant of both bacteria:
Colby (1):


per hour
Jaquan (2):


per hour
Using Colby's rate constant, we can use the general formula to calculate for Colby's final amount after 1 day (24 hours).
Note: All units must be constant, so convert day to hours.


Remember that the final amount for both bacteria must be the same after 24 hours. Again, using the general formula, we can calculate the initial amount of bacteria that Jaquan needs:

Answer:
I will answer the Question
Step-by-step explanation: