Yes, 23 has an inverse mod 1000 because gcd(23, 1000) = 1 (i.e. they are coprime).
Let <em>x</em> be the inverse. Then <em>x</em> is such that
23<em>x</em> ≡ 1 (mod 1000)
Use the Euclidean algorithm to solve for <em>x</em> :
1000 = 43×23 + 11
23 = 2×11 + 1
→ 1 ≡ 23 - 2×11 (mod 1000)
→ 1 ≡ 23 - 2×(1000 - 43×23) (mod 1000)
→ 1 ≡ 23 - 2×1000 + 86×23 (mod 1000)
→ 1 ≡ 87×23 - 2×1000 ≡ 87×23 (mod 1000)
→ 23⁻¹ ≡ 87 (mod 1000)
Answer:
Step-by-step explanation:
Algebraically, linear functions are polynomials with highest exponent equal to 1 or of the form y = c where c is constant. Nonlinear functions are all other functions. An example of a nonlinear function is y = x^2.
-0.6(-6.3)
When 2 numbers are side by side it is a multiplication problem.
Multiply -0.6 by (-6.3)
-0.6 x -6.3 = 3.78
Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
= 
A = ?
a=6.9
C=90
c=13.2
= 
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
= 
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m
Answer:
5 (strawberries / hours)
Step-by-step explanation:
calculation fro morning
strawberries / minutes x minutes / hours = strawberries / hours
so after adding the value in above equation
3/4* 60/1 = 45 strawberries / hours
calculation in the afternoon
strawberries / minutes x minutes / hours = strawberries / hours
2/3 x 60/1 = 40 strawberries / hours
so now by calculating difference between morning and afternoon packing rates, you can easily calculate
45-40 = 5 (strawberries / hours)