Answer:
The required proof is shown below.
Step-by-step explanation:
Consider the provided figure.
It is given that KM=LN
We need to prove KL=MN
Now consider the provided statement.
KM = LN Given
KM = KL+LM Segment addition postulate
LN = LM+MN Segment addition postulate
KL+LM = LM+MN Substitution property of equality
KL = MN Subtraction property of equality
The required proof is shown above.
So for this, we will be using synthetic division. To set it up, have the equation so that the divisor is -10 (since that is the solution of k + 10 = 0) and the dividend are the coefficients. Our equation will look as such:
<em>(Note that synthetic division can only be used when the divisor is a 1st degree binomial)</em>
- -10 | 1 + 2 - 82 - 28
- ---------------------------
Now firstly, drop the 1:
- -10 | 1 + 2 - 82 - 28
- ↓
- -------------------------
- 1
Next, you are going to multiply -10 and 1, and then combine the product with 2.
- -10 | 1 + 2 - 82 - 28
- ↓ - 10
- -------------------------
- 1 - 8
Next, multiply -10 and -8, then combine the product with -82:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80
- -------------------------
- 1 - 8 - 2
Next, multiply -10 and -2, then combine the product with -28:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80 + 20
- -------------------------
- 1 - 8 - 2 - 8
Now, since we know that the degree of the dividend is 3, this means that the degree of the quotient is 2. Using this, the first 3 terms are k^2, k, and the constant, or in this case k² - 8k - 2. Now what about the last coefficient -8? Well this is our remainder, and will be written as -8/(k + 10).
<u>Putting it together, the quotient is
</u>
Answer: follow my Instagram rihannah0423
Step-by-step explanation: PERIODT!!!!
A, x-intercept is when y=0, so in this case when y=0, the equation becomes 5x=0. Therefore, x must equal 0 for 5x=0. so y=0 and x=0 so the answer it (0,0), which is A.
Answer:
a) f(-6) = 37
b) f(8) = 65
Step-by-step explanation:
f(-6) = (-6)² + 1 = 36 + 1 = 37
f(8) = 8²+ 1 = 64 + 1 = 65