1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
1 year ago
7

Which of the following does not describe the graph below?A. The y-intercept is (0, -3).B. The x-intercept is (6, 0).C. The slope

is 1/2.D. The change in the y-values is 6, & the change in the x-values is 3.

Mathematics
1 answer:
Anastaziya [24]1 year ago
8 0

D.

1) Looking attentively at the graph

The following option does not describe

Let's check the slope

The option that does not describe is

D.

Because the

A, B and C are true.

And the change in the y values is -3, and the change in x- value is 6.

You might be interested in
Find the indefinite integral. (use c for the constant of integration.) sin3 5θ cos 5θ dθ
Elina [12.6K]

I'm guessing you mean

\displaystyle\int\sin^35\theta\cos5\theta\,\mathrm d\theta

Let t=5\sin\theta. Then \mathrm dt=5\cos5\theta\,\mathrm d\theta. So we have

\displaystyle\int\sin^35\theta\cos5\theta\,\mathrm d\theta=\frac15\int\sin^35\theta(5\cos5\theta)\,\mathrm d\theta

=\displaystyle\frac15\int t^3\,\mathrm dt

=\dfrac{t^4}{20}+C

=\dfrac{\sin^4\5\theta}{20}+C

7 0
3 years ago
Comapny a charges $117 and allows unlimited mileage
Rufina [12.5K]

Answer:

If we are working in a coordinate plane where the endpoints has the coordinates (x1,y1) and (x2,y2) then the midpoint coordinates is found by using the following formula:

midpoint=(x1+x22,y1+y22)

Step-by-step explanation:

5 0
3 years ago
Find the nth term of the sequence 7,25,51,85,127​
olya-2409 [2.1K]

Let <em>a </em>(<em>n</em>) denote the <em>n</em>-th term of the given sequence.

Check the forward differences, and denote the <em>n</em>-th difference by <em>b </em>(<em>n</em>). That is,

<em>b </em>(<em>n</em>) = <em>a </em>(<em>n</em> + 1) - <em>a </em>(<em>n</em>)

These so-called first differences are

<em>b</em> (1) = <em>a</em> (2) - <em>a</em> (1) = 25 - 7 = 18

<em>b</em> (2) = <em>a</em> (3) - <em>a</em> (2) = 51 - 25 = 26

<em>b </em>(3) = <em>a</em> (4) - <em>a</em> (3) = 85 - 51 = 34

<em>b</em> (4) = <em>a </em>(5) - <em>a</em> (4) = 127 - 85 = 42

Now consider this sequence of differences,

18, 26, 34, 42, …

and notice that the difference between consecutive terms in this sequence <em>b</em> is 8:

26 - 18 = 8

34 - 26 = 8

42 - 34 = 8

and so on. This means <em>b</em> is an arithmetic sequence, and in particular follows the rule

<em>b</em> (<em>n</em>) = 18 + 8 (<em>n</em> - 1) = 8<em>n</em> + 10

for <em>n</em> ≥ 1.

So we have

<em>a </em>(<em>n</em> + 1) - <em>a </em>(<em>n</em>) = 8<em>n</em> + 10

or, replacing <em>n</em> + 1 with <em>n</em>,

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + 8 (<em>n</em> - 1) + 10

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + 8<em>n</em> + 2

We can solve for <em>a</em> (<em>n</em>) by iteratively substituting:

<em>a</em> (<em>n</em>) = [<em>a</em> (<em>n</em> - 2) + 8 (<em>n</em> - 1) + 2] + 8<em>n</em> + 2

<em>a</em> (<em>n</em>) = <em>a </em>(<em>n</em> - 2) + 8 (<em>n</em> + (<em>n</em> - 1)) + 2×2

<em>a</em> (<em>n</em>) = [<em>a</em> (<em>n</em> - 3) + 8 (<em>n</em> - 2) + 2] + 8 (<em>n</em> + (<em>n</em> - 1)) + 2×2

<em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 3) + 8 (<em>n</em> + (<em>n</em> - 1) + (<em>n</em> - 2)) + 3×2

and so on. The pattern should be clear; we end up with

<em>a</em> (<em>n</em>) = <em>a</em> (1) + 8 (<em>n</em> + (<em>n</em> - 1) + … + 3 + 2) + (<em>n</em> - 1)×2

The middle group is the sum,

\displaystyle 8\sum_{k=2}^nk=8\sum_{k=1}^nk-8=\frac{8n(n+1)}2-8=4n^2+4n-8

so that

<em>a</em> (<em>n</em>) = <em>a</em> (1) + (4<em>n</em> ² + 4<em>n</em> - 8) + 2 (<em>n</em> - 1)

<em>a</em> (<em>n</em>) = 4<em>n</em> ² + 6<em>n</em> - 3

4 0
3 years ago
I need help with these 2 questions.
Usimov [2.4K]
The first one is 32m^15n^10
The second one is:
(h^12/h^4)^5
(h^6/h)^5
h^30/h^5
h^25/h

Hope this helps :)
3 0
3 years ago
Section 5.2 Problem 6:<br><br>Find the general solution<br><img src="https://tex.z-dn.net/?f=y%27%27%20%2B%206y%27%20%2B%2010y%2
mihalych1998 [28]

Answer:

y=e^{-3t}(A\: cos\: t+B\:sin\:t)

Step-by-step explanation:

<u>Given Second-Order Homogenous Differential Equation</u>

y''+6y'+10y=0

<u>Use Auxiliary Equation</u>

<u />m^2+6m+10=0\\\\(m+3)^2+1=0\\\\(m+3)^2=-1\\\\m+3=\pm i\\\\m=-3\pm i

<u>General Solution</u>

<u />y=e^{pt}(A\: cos\: qt+B\:sin\:qt)\\\\y=e^{-3t}(A\: cos\: t+B\:sin\:t)

Note that the DE has two distinct complex solutions p\pm qi where A and B are arbitrary constants.

4 0
2 years ago
Other questions:
  • If nick bought 5 apples for 4.45 what would be the cost for 7 apples
    12·2 answers
  • Answer please!!!!!!!!!!!!!!!!!!!!!!
    11·1 answer
  • Which statement is true
    13·1 answer
  • Rachel wants to know the mean price of all the sunglasses on a display rack.
    6·2 answers
  • Karinas science test scores for this quarter are 84,86,90 and 68. What score does she need on her fifth science test to get a te
    11·1 answer
  • 6[12-(5+2)]+6(4•|-6|)​
    11·2 answers
  • Natalie sawed 5 boards of equal lenghtto make a stool. each was 9 tenths of a meter long . what is the total length if the board
    12·1 answer
  • -2(x+3)=-2x-6 solve for x
    13·1 answer
  • 1. Keith has 224 books in his library. He bought several books at the yard sale over the weekend. He now has 366 books in his
    7·1 answer
  • Help me please. Find the area of the compound Shape
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!