Answer:
3.3167 moles Of AlCl3
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
3Ca + 2AlCl3 —> 3CaCl2 + 2Al
From the balanced equation above,
2 moles of AlCl3 reacted to produce 2 moles of Al.
Finally, we shall obtained the number of moles of AlCl3 that reacted to produce 3.3167 moles of Al as follow:
From the balanced equation above,
2 moles of AlCl3 reacted to produce 2 moles of Al.
Therefore, 3.3167 moles Of AlCl3 will also react to produce 3.3167 moles of Al.
Thus, 3.3167 moles Of AlCl3 is needed for the reaction.
Answer:
Mitochondria brings food and water to your cells
During cellular respiration<span>, glucose is broken down in the presence of oxygen to produce carbon dioxide and water,energy is </span><span>released.</span>
Answer:
0.287 mole of PCl5.
Explanation:
We'll begin by calculating the number of mole in 51g of Cl2. This is illustrated below:
Molar mass of Cl2 = 2 x 35.5 = 71g/mol
Mass of Cl2 = 51g
Number of mole of Cl2 =..?
Mole = Mass /Molar Mass
Number of mole of Cl2 = 51/71 = 0.718 mole
Next, we shall write the balanced equation for the reaction. This is given below:
P4 + 10Cl2 → 4PCl5
Finally, we determine the number of mole of PCl5 produced from the reaction as follow:
From the balanced equation above,
10 moles of Cl2 reacted to produce 4 moles of PCl5.
Therefore, 0.718 mole of Cl2 will react to produce = (0.718 x 4)/10 = 0.287 mole of PCl5.
Therefore, 0.287 mole of PCl5 is produced from the reaction.