Answer:
The length of arc PQ is 8.1 inches.
Step-by-step explanation:
First, you have to find the angle of POQ. Given that total angles in a circle is 360°, so you have to subtract to get ∠POQ :
![73 + 150 + 65 + ∠POQ = 360](https://tex.z-dn.net/?f=73%20%2B%20150%20%2B%2065%20%2B%20%E2%88%A0POQ%20%3D%20360)
![288 + ∠POQ = 360](https://tex.z-dn.net/?f=288%20%2B%20%E2%88%A0POQ%20%3D%20360)
![∠POQ = 360 - 288 = 72](https://tex.z-dn.net/?f=%E2%88%A0POQ%20%3D%20360%20-%20288%20%3D%2072)
Next, you have to apply length of arc formula, Arc = θ/360×2×π×r where θ represents the angle of arc and r is the radius of circle :
![arc = \frac{θ}{360} \times 2 \times \pi \times r](https://tex.z-dn.net/?f=arc%20%3D%20%20%5Cfrac%7B%CE%B8%7D%7B360%7D%20%20%5Ctimes%202%20%5Ctimes%20%5Cpi%20%5Ctimes%20r)
![let \: θ = 72,\pi = 3.14,r = 6.48](https://tex.z-dn.net/?f=let%20%5C%3A%20%CE%B8%20%3D%2072%2C%5Cpi%20%3D%203.14%2Cr%20%3D%206.48)
![arc = \frac{72}{360} \times 2 \times 3.14 \times 6.48](https://tex.z-dn.net/?f=arc%20%3D%20%20%5Cfrac%7B72%7D%7B360%7D%20%20%5Ctimes%202%20%5Ctimes%203.14%20%5Ctimes%206.48)
![arc = 8.1 \: inches \: (near.tenth)](https://tex.z-dn.net/?f=arc%20%3D%208.1%20%5C%3A%20inches%20%5C%3A%20%28near.tenth%29)
Answer:
x⁵ +2x³ -3x², degree 5, 3 terms
Step-by-step explanation:
We assume you intend your expression to be ...
2x³ -3x² +x⁵
The superscript numbers are exponents. Each indicates the degree of the term. In standard form, terms are listed in decreasing order by degree:
x⁵ +2x³ -3x² . . . . standard form
The degree of the polynomial is the degree of the highest-degree term: 5.
The number of terms is the number of products in the sum: 3.
Answer:
1186.16
Step-by-step explanation:
Answer:
Both of them can be simplified.
Recall that 4 = 2^2.
2^7 / 4^2 = 2^7 / (2^2)^2 = 2^7 / 2^4 = 2^(7-4) = 2^3 = 8
Similarly, 2^7 / 2^4 = 2^(7-4) = 2^3 = 8
The answers to both exercises are 8.