

Cancel out the denominators.
(x+5)² + 18 = -30
(x+5)² = -30 - 18
(x+5)² = -48
The equation is impossible, we have a negative number.
There isn't a number that squared gives a negative number (the square is always positive).
√(x+5)² = +/- √-48
x+5 = +/- √-48
IMPOSSIBLE
You can write the result in imaginary numbers
x+5=+/- 4i√3
The answer is: t<span>he triangles are not similar.</span>
False because you walk both the sides so you would have to do 360x2 added to 160x2
Top second one under grass and across from minor 77.972.
Answer:
Solution : 
Step-by-step explanation:
![-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right]](https://tex.z-dn.net/?f=-3%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%7D%7B4%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%7D%7B4%7D%5Cright%29%5Cright%5D%5C%3A%5Cdiv%20%5C%3A2%5Csqrt%7B2%7D%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%5Cright%5D)
Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

=
÷ 
=
÷ 
=
÷
=
÷
= 
As you can see your solution is the last option.