![\bf n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ a_n=2-5(n-1)\implies a_n=\stackrel{\stackrel{a_1}{\downarrow }}{2}+(n-1)(\stackrel{\stackrel{d}{\downarrow }}{-5})](https://tex.z-dn.net/?f=%5Cbf%20n%5E%7Bth%7D%5Ctextit%7B%20term%20of%20an%20arithmetic%20sequence%7D%20%5C%5C%5C%5C%20a_n%3Da_1%2B%28n-1%29d%5Cqquad%20%5Cbegin%7Bcases%7D%20n%3Dn%5E%7Bth%7D%5C%20term%5C%5C%20a_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5C%20d%3D%5Ctextit%7Bcommon%20difference%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20a_n%3D2-5%28n-1%29%5Cimplies%20a_n%3D%5Cstackrel%7B%5Cstackrel%7Ba_1%7D%7B%5Cdownarrow%20%7D%7D%7B2%7D%2B%28n-1%29%28%5Cstackrel%7B%5Cstackrel%7Bd%7D%7B%5Cdownarrow%20%7D%7D%7B-5%7D%29)
so, we know the first term is 2, whilst the common difference is -5, therefore, that means, to get the next term, we subtract 5, or we "add -5" to the current term.

just a quick note on notation:
![\bf \stackrel{\stackrel{\textit{current term}}{\downarrow }}{a_n}\qquad \qquad \stackrel{\stackrel{\textit{the term before it}}{\downarrow }}{a_{n-1}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{current term}}{a_5}\qquad \quad \stackrel{\textit{term before it}}{a_{5-1}\implies a_4}~\hspace{5em}\stackrel{\textit{current term}}{a_{12}}\qquad \quad \stackrel{\textit{term before it}}{a_{12-1}\implies a_{11}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_n%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bthe%20term%20before%20it%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_%7Bn-1%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_5%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B5-1%7D%5Cimplies%20a_4%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_%7B12%7D%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B12-1%7D%5Cimplies%20a_%7B11%7D%7D)
I think you would add all the glasses together which you would then get 89 then you would divide that number by two because we are looking for how much glasses Tina and Kate could both get so 89/2 =44.5 so they would each evenly get 44.5 glasses. I'm sorry I think this is what you were looking for?
Answer: The equation is <em>s</em> = 350 + 60<em>s</em>, and given this equation, we can determine that the total savings after eleven weeks is $1,010.
Answer:
-4
Step-by-step explanation:
Find the common difference of the arithmetic sequence.
-6,-10, -14, -18,
1st one on second row I think