The distance from the center to where the foci are located exists 8 units.
<h3>How to determine the distance from the center?</h3>
The formula associated with the focus of an ellipse exists given as;
c² = a² − b²
Where c exists the distance from the focus to the center.
a exists the distance from the center to a vertex,
the major axis exists 10 units.
b exists the distance from the center to a co-vertex, the minor axis exists 6 units
c² = a² − b²
c² = 10² - 6²
c² = 100 - 36
c² = 64

c = 8
Therefore, the distance from the center to where the foci are located exists 8 units.
To learn more about the Pythagorean theorem here:
brainly.com/question/654982
#SPJ4
To do this, you got to square 256.
The square root of 256 is 16.
Therefore, there are 16 small squares on each edge of the mosaic.
Kinda proof:
o o o o O
o o o o O
o o o o O
o o o o O
o o o o O
25 squares. Square root is 5. 5 along each edge. My work shares same concept.
Extremely unnecessary proof:
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
There are 256 squares, and you can count 16 on each edge. this shows 16 times 16, or 16 squared, which is 256.
Answer:
y=0.3x-2
Step-by-step explanation:
first find the gradient
m=y2-y1/x2-x1
m=0-(-2)/6-0
m=0.3
then use this equation
y-y1=m(x-x1)
y-(-2)=0.3(x-0)
y+2=0.3x-0
y=0.3x-2