1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
10

Please solve these questions. (Geometry)

Mathematics
1 answer:
son4ous [18]3 years ago
5 0
No idea what this is, sorry
You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
The table represents a linear function.
Alona [7]

Answer: -6

See attached picture

6 0
3 years ago
A parallelogram has an area of 60 square inches. If the base of the parallelogram is 12 inches, what is the height of the parall
Vikentia [17]
How to find the area of a parallelogram is length times height. 12 times what gets you to 60? 5 does. 12 times 5 is 60.

HEIGHT: 5



8 0
3 years ago
There are nickels, dimes, quarters in a large piggy bank, for every 2 nickels there are 3 dimes, for every 2 dimes there are 5 q
Alex

There are 80 nickels and 120 dimes and 300 quarters in piggy bank

<em><u>Solution:</u></em>

Given that,

For every 2 nickels there are 3 dimes ,

So, ratio of nickel to dime will be 2 : 3

Also for every 2 dimes there are 5 quarters

So, ratio of dime to quarters is 2 : 5

Let us first find the ratio of nickles to dimes to quarters

nickel : dime = 2 : 3

dime : quarters = 2 : 5

\frac{nickel}{dime} = \frac{2}{3}

nickel = \frac{2}{3} dime

\frac{dime}{quarter} = \frac{2}{5}

quarter = \frac{5}{2}dime

So,

nickel : dime : quarter = \frac{2}{3}dime : dime : \frac{5}{2}dime\\\\nickel : dime : quarter = \frac{2}{3} : 1 : \frac{5}{2}\\\\nickel : dime : quarter = 4 : 6 : 15

Thus nickel : dime : quarters = 4 : 6 : 15

Now, let the number of nickel be 4x

Let the number of dimes be 6x

Let the number of quarters be 15x

From given question,

There are 500 coins in all.

number of nickel + number of dimes + number of quarters = 500

4x + 6x + 15x = 500

25x = 500

x = 20

Thus,

number of nickel = 4x = 4(20) = 80

number of dimes = 6x  = 6(20) = 120

number of quarters = 15x = 15(20) = 300

Thus there are 80 nickels and 120 dimes and 300 quarters in piggy bank    

3 0
3 years ago
Ratio Question;
SashulF [63]

*Given

Money of Phoebe            - 3 times as much as Andy

Money of Andy                - 2 times as much as Polly

Total money of Phoebe,  - £270

   Andy and Polly

*Solution

Let

B - Phoebe's money

A - Andy's money

L - Polly's money

1. The money of the Phoebe, Andy, and Polly, when added together would total £270. Thus,

                 B + A + L  = £270                     (EQUATION 1)

2. Phoebe has three times as much money as Andy and this is expressed as

 

                 B = 3A

3. Andy has twice as much money as Polly and this is expressed as

                 A = 2L                           (EQUATION 2)

4. This means that Phoebe has ____ as much money as Polly,

                B = 3A

                B = 3 x (2L)

                B = 6L                            (EQUATION 3)

This step allows us to eliminate the variables B and A in EQUATION 1 by expressing the equation in terms of Polly's money only.

5. Substituting B with 6L, and A with 2L, EQUATION 1 becomes,

                 6L + 2L + L = £270

                               9L = £270

                                 L = £30

So, Polly has £30.

6. Substituting L into EQUATIONS 2 and 3 would give us the values for Andy's money and Phoebe's money, respectively.

                 A = 2L                          

                 A = 2(£30)

                 A = £60

Andy has £60

                 B = 6L                        

                 B = 6(£30)

                 B = £180

Phoebe has £180

Therefore, Polly's money is £30, Andy's is £60, and Phoebe's is £180.

3 0
3 years ago
Other questions:
  • The amount $4.50 is 6 of what price
    6·1 answer
  • 50% of babies are born female. Olive wants to find the probability that 20 or more of the 50 babies born today were female. Use
    13·2 answers
  • Please help me!!!!!!!!!!
    14·2 answers
  • Solve. u+6 = 18<br> a. 3<br> b. 12<br> c. 24<br> d. 108
    12·1 answer
  • What is 65/8 as a mixed number
    14·2 answers
  • Cost price of a chair and table is rupee 490. If the cost of the chair is rupee 50 less than the cost of the table, find the cos
    12·1 answer
  • Write this ratio in its simplest form<br>5kg : 20g​
    6·2 answers
  • Students from Williams Middle School are also recycling aluminum cans. The data for the numbers of cans brought in each school d
    7·2 answers
  • Answer all or none! Ty!​
    11·1 answer
  • Find the value of y if the mean is 22 and 18 ( 2y+1), 10 and 20 is 15<br>​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!