Answer:it’s 0
Step-by-step explanation:
You do -3 plus 4 and then minus 1 which would be 0
ANSWER

EXPLANATION
To find the average weight per bushel, we add all the three weight and divide by 3.

We convert all the mixed numbers to improper fraction to obtain,

The least common denominator for the fractions in the numerator is 8.
This implies that,

This simplifies to

This gives us,


Step-by-step explanation:
<h2><u>Given :-</u></h2>
(√3-√2)/(√3+√2)
<h2><u>To find :-</u></h2>
Rationalised form = ?
<h2><u>Solution:-</u></h2>
Given that
(√3-√2)/(√3+√2)
The denominator = √3+√2
The Rationalising factor of √3+√2 is √3-√2
On Rationalising the denominator then
=> [(√3-√2)/(√3+√2)]×[(√3-√2)/(√3-√2)]
=> [(√3-√2)(√3-√2)]×[(√3+√2)(√3-√2)]
=> (√3-√2)²/[(√3+√2)(√3-√2)]
=> (√3-√2)²/[(√3)²-(√2)²]
Since (a+b)(a-b) = a²-b²
Where , a = √3 and b = √2
=> (√3-√2)²/(3-2)
=> (√3-√2)²/1
=> (√3-√2)²
=> (√3)²-2(√3)(√2)+(√2)²
Since , (a-b)² = a²-2ab+b²
Where , a = √3 and b = √2
=> 3-2√6+2
=> 5-2√6
Hence, the denominator is rationalised.
<h2>
<u>Answer</u><u>:</u></h2>
Rationalised form of (√3-√2)/(√3+√2) is 5 - 2√6.
<h2><u>U</u><u>sed </u><u>formulae:</u><u>-</u></h2>
- (a+b)(a-b) = a²-b²
- (a-b)² = a²-2ab+b²
- The Rationalising factor of √3+√2 is √3-√2
tan x = sin x/cos x
cos³ x *tan²x - cos x = cos³x *(sin²x/ cos² x) - cos= cosx*sin²x - cos x =
= cos x(sin² x - 1) = - cos x(1 - sin²x)= - cosx*cos²x = - cos³ x