Answer:
The membrane potential of a nerve cell will depolarize if there is an increase in the positive ions inside the cell.
Explanation:
When nerves are in resting potential it is -70mV. In this stage interior of the cell is negatively charged and outside is more positive. When depolarization occurs the inside cell becomes positive.
This is due to the rush of sodium ions into the cell by voltage-gated channels. Now the inside charge is more positive and the chloride ions move out of the cell. Thus outside becomes more negative.
After some time of depolarization stage, potassium ions move out of the cell making the nerve cell again negative. Now the depolarized stage becomes repolarized by the entry of potassium ions.
During depolarization, the potential of the cell is -55mV. When repolarization occurs, it is again -70mV. But the potassium channels are open and some of the potassium ions move out of the cell making the inside environment more negative. This is known as hyperpolarization condition.
This hyperpolarization remains for a short period where action potential can't occur. This period is called the refractory period. Again potassium ions enter into the cell. This results in the resting potential of the neuron again.
It can effect many things including things in the area of the farm and the water. This happens when runoff occurs.
Answer:
The likelihood of having blue offspring equals 3/16 (1/16 AAbb + 2/16 Aabb)
Explanation:
Due to technical problems, you will find the complete explanation in the attached files
<h2>Answer:</h2>
The option A, B and E are correct.
<h3>Explanation:</h3>
Homeostasis is the ability or tendency to maintain internal stability in an organism to compensate for environmental changes. An example of homeostasis is the human body keeping an average temperature of 37 C degrees.
Homeostasis, any self-regulating process by which biological systems tend to maintain stability while adjusting to conditions that are optimal for survival.
So for the existence of living organism homeostasis is important.
Statements A, B and E apply to the definition of homeostasis.