Answer:
a) <em>The equation of the parabola </em>
<em> </em>
<em></em>
Step-by-step explanation:
<u><em>Explanation</em></u>:-
<u><em>Step(i):-</em></u>
Given the directrix of the parabola y = 6
Focus of the parabola S(0,4)
<em>The standard equation of the parabola</em>
<em> ( x- h)² = 4 a (y-k)</em>
<em>(h,k) is the vertex of the parabola</em>
<em>Axis of the parabola is parallel to y-axis</em>
Given the directrix of the parabola y = 6
The directrix of the parabola y = k -a = 6
<em> k-a =6 ..</em>.(i)
The focus of the parabola
S( h , K+a) = (0,4)
so h = 0 and K+a =4
K+a =4 ....(ii)
<u><em>Step(ii):-</em></u>
Solving (i) and (ii) equations , we get
Adding (i) and (ii) equations and we get
K-a + k+a = 6 +4
2 K = 10
<em> K =5</em>
Substitute K =5 in equation (i)
K -a =6
5 -a =6
5-6 =a
<em> a = -1</em>
<u><em>Step(iii):</em></u><em>-</em>
<em>we have (h,k) =( 0,5) and a = -1</em>
<em>The equation of the parabola </em>
<em> ( x- h)² = 4 a (y-k)</em>
<em> ( x- 0)² = 4 (-1) (y-5)</em>
<em> x² = -4 y + 20</em>
<em> -4 y = x² - 20</em>
<em>dividing '-4' on both sides, we get</em>
<em> </em>
<em></em>
<em> </em>
<em></em>
<u><em>Final answer</em></u><em>:-</em>
<em>The equation of the parabola </em>
<em> </em>
<em></em>
<em></em>
<em></em>
<u><em></em></u>
<em></em>