Answer: n = 4π(sq)q/(t(sq)*p)
Step-by-step explanation: please see attachment for clearer details. Thanks!
Answer:
763.2% or 954/125
Step-by-step explanation:
Answer:
621
629
Step-by-step explanation:
We know that
sin
(
x
+
y
)
=
sin
x
cos
y
+
sin
y
cos
x
If
cos
x
=
8
17
and
sin
y
=
12
37
We can use,
cos
2
x
+
sin
2
x
=
1
and
cos
2
y
+
sin
2
y
=
1
To calculate
sin
x
and
cos
y
sin
2
x
=
1
−
cos
2
x
=
1
−
(
8
17
)
2
=
225
17
2
sin
x
=
15
17
cos
2
y
=
1
−
sin
2
y
=
1
−
(
12
37
)
2
=
1225
37
2
cos
y
=
35
37
so,
sin
(
x
+
y
)
=
15
17
⋅
35
37
+
12
37
⋅
8
17
=
621
629
Answer link
Shwetank Mauria
Nov 22, 2016
sin
(
x
+
y
)
=
621
629
or
−
429
629
depending on the quadrant in which sine and cosine lie.
Explanation:
Before we commence further, it may be mentioned that as
cos
x
=
8
17
,
x
is in
Q
1
or
Q
4
i.e.
sin
x
could be positive or negative and as
sin
y
=
12
37
,
y
is in
Q
1
or
Q
2
i.e.
cos
y
could be positive or negative.
Hence four combinations for
(
x
+
y
)
are there and for
sin
(
x
+
y
)
=
sin
x
cos
y
+
cos
x
sin
y
, there are four possibilities.
Now as
cos
x
=
8
17
,
sin
x
=
√
1
−
(
8
17
)
2
=
√
1
−
64
289
=
√
225
289
=
±
15
17
and
as
sin
y
=
12
37
,
cos
y
=
√
1
−
(
12
37
)
2
=
√
1
−
144
1369
=
√
1225
1369
=
±
35
37
Hence,
(1) when
x
and
y
are in
Q
1
sin
(
x
+
y
)
=
15
17
×
35
37
+
8
17
×
12
37
=
525
+
96
629
=
621
629
(2) when
x
is in
Q
1
and
y
is in
Q
2
sin
(
x
+
y
)
=
15
17
×
−
35
37
+
8
17
×
12
37
=
−
525
+
96
629
=
−
429
629
(3) when
x
is in
Q
4
and
y
is in
Q
2
sin
(
x
+
y
)
=
−
15
17
×
−
35
37
+
8
17
×
12
37
=
525
+
96
629
=
621
629
(4) when
x
is in
Q
4
and
y
is in
Q
1
sin
(
x
+
y
)
=
−
15
17
×
35
37
+
8
17
×
12
37
=
−
525
+
96
629
=
−
429
629
Hence,
sin
(
x
+
y
)
=
621
629
or
−
429
629
Answer:
30 minutes
Step-by-step explanation:
300/10= 30
Hope this helps! :)
<h3>
Answer: C) Not congruent</h3>
We have 2 pairs of congruent angles, so we can prove the triangles are similar triangles (using the AA similarity theorem). But we don't have enough information to prove them to be congruent. We would need at least one pair of sides to be congruent so we could use either AAS or ASA.
For instance, if we knew that AT = AP, then we would use AAS. If we knew that HT = MP, then we would use ASA instead. However, we don't have either bit of information like this. The triangles may or may not be congruent. We simply don't have enough information to say either way. We can't definitively say they are congruent, so we just lean toward "not congruent".