Answer:
A. donation of excited electrons by chlorophyll a to a primary electron acceptor
Explanation:
Photosystems are structures located at the thylakoid membrane that act to harvest energy light in order to convert it into chemical energy. Each photosystem is composed of a light-harvesting complex and a core complex, which in turn is composed of a reaction center. The photosynthetic reaction centers are multi-protein complexes that use light energy to catalyze the electron transfer across the chloroplast thylakoid membrane against a thermodynamic gradient. Moreover, antenna pigments are pigments that capture the energy from photons in order to transfer energy to other pigments in the photosystem (e.g., chlorophyll B and carotenes are antenna pigments, whereas chlorophyll A is the core pigment). Light energy absorbed by antenna pigments in the photosystems is transferred to the reaction center chlorophyll A molecules, thereby exiting electrons in the reaction center. A reaction center consists of two chlorophyll A molecules, which donate electrons to the primary electron acceptor.
They all contain at least one cell, and they need need food, water, energy, and living space to survive. They are both considered living organisms as well. They depend on abiotic and biotic factors in an ecosystem to survive.
You have been assigned the job of convincing the local school board of the best means of making up snow days in your school district. Write a draft of your presentation. (IF YOU HELP I WILL GIVE YOU BRAINIEST!)
With shorter necks, giraffe ancestors could not reach food-containing branches on tall trees. This resulted in the directional selection of giraffes with longer necks.
<h3>
Why is choosing a direction necessary? </h3>
It nearly appears obvious that the giraffe's long neck developed as a result of a lack of food in the lower branches of trees. The giraffe has a significant advantage because it is taller than any other mammal and can feed where few others can.
When compared to modern giraffes, the giraffe's ancient predecessors had a shorter neck. The plants that were lying at a higher level were inaccessible to them. Giraffe phenotypes have changed in various ways, and now have long necks to reach vegetation that is higher up. The extreme form is chosen above other features in directional selection. It was decided to choose the long-necked giraffe over the short-necked.
To know more about direction selection for longer necked giraffes visit:
brainly.com/question/3738222
#SPJ4