thus, the best car is car B,because it can tavel 29 miles with only one gallon,andcar A can only travel 28 miles with one gallon.
First, you would add all the pounds he bought altogether, to know how much he bought, and how many pounds he will divide amongst his friends. That's 3.4 + 2.5 + 4 which equals to 9.9.
So he divides 9.9 pounds of cashews between himself and his two friends, and that makes it dividing 9.9 pounds between two people. That would simply make it : 9.9 ÷ 3, which equals to 3.3
Each friend will get 3.3 pounds of cashews.
Answer:
a) 8.13
b) 4.10
Step-by-step explanation:
Given the rate of reaction R'(t) = 2/t+1 + 1/√t+1
In order to get the total reaction R(t) to the drugs at this times, we need to first integrate the given function to get R(t)
On integrating R'(t)
∫ (2/t+1 + 1/√t+1)dt
In integration, k∫f'(x)/f(x) dx = 1/k ln(fx)+C where k is any constant.
∫ (2/t+1 + 1/√t+1)dt
= ∫ (2/t+1)dt+ ∫ (1/√t+1)dt
= 2∫ 1/t+1 dt +∫1/+(t+1)^1/2 dt
= 2ln(t+1) + 2(t+1)^1/2 + C
= 2ln(t+1) + 2√(t+1) + C
a) For total reactions from t = 1 to t = 12
When t = 1
R(1) = 2ln2 + 2√2
≈ 4.21
When t = 12
R(12) = 2ln13 + 2√13
≈ 12.34
R(12) - R(1) ≈ 12.34-4.21
≈ 8.13
Total reactions to the drugs over the period from t = 1 to t= 12 is approx 8.13.
b) For total reactions from t = 12 to t = 24
When t = 12
R(12) = 2ln13 + 2√13
≈ 12.34
When t = 24
R(24) = 2ln25 + 2√25
≈ 16.44
R(12) - R(1) ≈ 16.44-12.34
≈ 4.10
Total reactions to the drugs over the period from t = 12 to t= 24 is approx 4.10
Answer:
I believe the quiz had 18 questions, with a 14:4 ratio
Try to relax. Your desperation has surely progressed to the point where
you're unable to think clearly, and to agonize over it any further would only
cause you more pain and frustration.
I've never seen this kind of problem before. But I arrived here in a calm state,
having just finished my dinner and spent a few minutes rubbing my dogs, and
I believe I've been able to crack the case.
Consider this: (2)^a negative power = (1/2)^the same power but positive.
So:
Whatever power (2) must be raised to, in order to reach some number 'N',
the same number 'N' can be reached by raising (1/2) to the same power
but negative.
What I just said in that paragraph was: log₂ of(N) = <em>- </em>log(base 1/2) of (N) .
I think that's the big breakthrough here.
The rest is just turning the crank.
Now let's look at the problem:
log₂(x-1) + log(base 1/2) (x-2) = log₂(x)
Subtract log₂(x) from each side:
log₂(x-1) - log₂(x) + log(base 1/2) (x-2) = 0
Subtract log(base 1/2) (x-2) from each side:
log₂(x-1) - log₂(x) = - log(base 1/2) (x-2) Notice the negative on the right.
The left side is the same as log₂[ (x-1)/x ]
==> The right side is the same as +log₂(x-2)
Now you have: log₂[ (x-1)/x ] = +log₂(x-2)
And that ugly [ log to the base of 1/2 ] is gone.
Take the antilog of each side:
(x-1)/x = x-2
Multiply each side by 'x' : x - 1 = x² - 2x
Subtract (x-1) from each side:
x² - 2x - (x-1) = 0
x² - 3x + 1 = 0
Using the quadratic equation, the solutions to that are
x = 2.618
and
x = 0.382 .
I think you have to say that <em>x=2.618</em> is the solution to the original
log problem, and 0.382 has to be discarded, because there's an
(x-2) in the original problem, and (0.382 - 2) is negative, and
there's no such thing as the log of a negative number.
There,now. Doesn't that feel better.