Pupils dilate and constrict in order to allow an adequate amount of light to pass through the retina and vision. If there is not enough light and the pupils do not dilate, a small amount of light will pass to the retina and the vision will be damaged.
Answer : Noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Explanation :
Noble gases are the chemical elements that are present in group 18 in the periodic table.
The elements are helium, neon, argon, krypton, xenon and radon.
They are chemically most stable except helium due to having the maximum number of 8 valence electrons can hold their outermost shell that means they have a complete octet.
They are rarely reacts with other elements to form compounds by gaining or losing electrons since they are already chemically stable.
Hence, the noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Answer:
hydrogen chloride...........
Answer:
The bit take to reach its maximum speed of 8,42 x10^4 rad/s in an amount of 1.097 seconds.
Explanation:
ω1= 1.72x10^4 rad/sec
ω2= 5.42x10^4 rad/sec
ωmax= 8.42x10^4 rad/sec
θ= 1.72x10^4 rad

α=7.67 x10^4 rad/sec²
t= ωmax / α
t= 8.42 x10^4 rad/sec / 7.67 x10^4 rad/sec²
t=1.097 sec