Answer:
25.59 m/s²
Explanation:
Using the formula for the force of static friction:
--- (1)
where;
static friction force
coefficient of static friction
N = normal force
Also, recall that:
F = mass × acceleration
Similarly, N = mg
here, due to min. acceleration of the car;

From equation (1)

However, there is a need to balance the frictional force by using the force due to the car's acceleration between the quarter and the wall of the rocket.
Thus,




where;
and g = 9.8 m/s²


Answer:
The answer is 18 N.
Explanation:
A force can be divided into components x and y components. The component along the x-axis is called the horizontal component and along the y-axis is called the vertical component. In this case, as the force is in a horizontal direction and is also known as x-component of force. The x- component of force is
Fx = Fcosθ
Fx = 22(cos 35°)
Fx = 22 x 0.819
Fx = 18 N
Child's horizontal pull forces are equal to that of frictional resistance force on the wagon.
Answer : The mass of ice melted can be, 3.98 grams.
Explanation :
First we have to calculate the moles of ice.

where,
Q = energy absorbed = 27.2 kJ
= enthalpy of fusion of ice = 6.01 kJ/mol
n = moles = ?
Now put all the given values in the above expression, we get:


Now we have to calculate the mass of ice.

Molar mass of ice = 18.02 g/mol

Thus, the mass of ice melted can be, 3.98 grams.
Answer:
The required new pressure is 775 mm hg.
Explanation:
We are given that gas has a volume of 185 ml and a pressure of 310 mm hg. The desired volume is 74.0 ml.
We have to find the required new pressure.
Let the required new pressure be '
'.
As we know that Boyle's law formula states that;

where,
= original pressure of gas in the container = 310 mm hg
= required new pressure
= volume of gas in the container = 185 ml
= desired new volume of the gas = 74 ml
So,
= 775 mm hg
Hence, the required new pressure is 775 mm hg.