Mendel concluded that pea traits like flower color were determined by separate units. From the results, Mendel proved that all traits do not blend. For instance, purple flowers mixed with white flowers did not produce pink flowers.
Since all of the offspring have the purple phenotype, this tells us that the purple allele is dominant to the white allele. ... This means that 75% of the offspring displayed the dominant phenotype of purple flowers, and 25% displayed the recessive phenotype of white flowers.
Two pea plants, both heterozygous for flower color, are crossed. The offspring will show the dominant purple coloration in a 3:1 ratio. Or, about 75% of the offspring will be purple.
Mendel's Results
Mendel noted the ratio of white flowered plants to purple-flowered plants was about 3:1. That is, for every three purple-flowered plants, there was one white flowered plant.
<span>Definition of a hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom covalently bound to a highly electro negative atom such as nitrogen, oxygen, or fluorine experiences. Hope this helps </span>
Answer:
Main sequence stars fuse hydrogen atoms to form helium atoms in their cores. About 90 percent of the stars in the universe, including the sun, are main sequence stars. These stars can range from about a tenth of the mass of the sun to up to 200 times as massive.
Stars start their lives as clouds of dust and gas. Gravity draws these clouds together. A small protostar forms, powered by the collapsing material. Protostars often form in densely packed clouds of gas and can be challenging to detect.
"Nature doesn't form stars in isolation," Mark Morris, of the University of California at Los Angeles (UCLS), said in a statement. "It forms them in clusters, out of natal clouds that collapse under their own gravity."
Smaller bodies — with less than 0.08 the sun's mass — cannot reach the stage of nuclear fusion at their core. Instead, they become brown dwarfs, stars that never ignite. But if the body has sufficient mass, the collapsing gas and dust burns hotter, eventually reaching temperatures sufficient to fuse hydrogen into helium. The star turns on and becomes a main sequence star, powered by hydrogen fusion. Fusion produces an outward pressure that balances with the inward pressure caused by gravity, stabilizing the star.
How long a main sequence star lives depends on how massive it is. A higher-mass star may have more material, but it burns through it faster due to higher core temperatures caused by greater gravitational forces. While the sun will spend about 10 billion years on the main sequence, a star 10 times as massive will stick around for only 20 million years. A red dwarf, which is half as massive as the sun, can last 80 to 100 billion years, which is far longer than the universe's age of 13.8 billion years. (This long lifetime is one reason red dwarfs are considered to be good sources for planets hosting life, because they are stable for such a long time.)
Explanation:
I hope this helped!
A closed system is a system that makes no physical or chemical exchanges with its environment. Of these systems provided as choices (tree, human, clock, car), only a clock does not make exchanges with the environment, except for energy.
Therefore, of that list, only a clock would be a closed system.
Hope that helped! =)
The element has about 47 protons