1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
4 years ago
15

Find the inverse of the function y=2x^2+2

Mathematics
1 answer:
GREYUIT [131]4 years ago
7 0
Y = 2x^2 + 2
2x^2 = y - 2
x^2 = ( y - 2)/2

x =  sqrt (1/2y - 1)

inverse  = +/- sqrt ( 1/2 x - 1)

Last choice
You might be interested in
Question 20 fast please
kipiarov [429]

Answer:

Square root of 4 is 2

so  1+\frac{[1+\sqrt{2x-1]}^2 }{4}=4

frac{[1+sqrt{2x-1]}^2 }{4}=3

so 1+sqrt{2x-1]}^2=12

so 1+sqrt{2x-1}=V12

sqrt{2x-1}=V12-1

2x-1=(V12-1)^2=12-2V12+1=13-2V12

2x=13+1-2V12

2x=14-2V12

x=7-V12

x=7-2V3

I put an attachment to explain better

   

Step-by-step explanation:

6 0
3 years ago
What is the final answer of 100-8(12+8)+10
Anastasy [175]

Step-by-step explanation:

Check the image above dear....

7 0
3 years ago
How do you solve this problem? (x+3) cubed
Lubov Fominskaja [6]
You would expand becausee it isn't equal to anything

(x+3)^3=(x+3)(x+3)(x+3)
we can use binomial theorem or pascal's triangle
anyway, pascal's triangle is more practicl for this one

so
for the 3rd power
(a+b)^3=1a^3+3a^2b^1+3a^1b^2+1b^3

a=x
b=3

(x+3)^3=1x^3+3x^2(3^1)+3x^1(3)^2+1(3)^3=
x^3+9x^2+27x+27


7 0
4 years ago
Read 2 more answers
Find the laplace transform of f(t) = cosh kt = (e kt + e −kt)/2
iren2701 [21]
Hello there, hope I can help!

I assume you mean L\left\{\frac{ekt+e-kt}{2}\right\}
With that, let's begin

\frac{ekt+e-kt}{2}=\frac{ekt}{2}+\frac{e}{2}-\frac{kt}{2} \ \textgreater \  L\left\{\frac{ekt}{2}-\frac{kt}{2}+\frac{e}{2}\right\}

\mathrm{Use\:the\:linearity\:property\:of\:Laplace\:Transform}
\mathrm{For\:functions\:}f\left(t\right),\:g\left(t\right)\mathrm{\:and\:constants\:}a,\:b
L\left\{a\cdot f\left(t\right)+b\cdot g\left(t\right)\right\}=a\cdot L\left\{f\left(t\right)\right\}+b\cdot L\left\{g\left(t\right)\right\}
\frac{ek}{2}L\left\{t\right\}+L\left\{\frac{e}{2}\right\}-\frac{k}{2}L\left\{t\right\}

L\left\{t\right\} \ \textgreater \  \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{t\right\}=\frac{1}{s^2} \ \textgreater \  L\left\{t\right\}=\frac{1}{s^2}

L\left\{\frac{e}{2}\right\} \ \textgreater \  \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{a\right\}=\frac{a}{s} \ \textgreater \  L\left\{\frac{e}{2}\right\}=\frac{\frac{e}{2}}{s} \ \textgreater \  \frac{e}{2s}

\frac{ek}{2}\cdot \frac{1}{s^2}+\frac{e}{2s}-\frac{k}{2}\cdot \frac{1}{s^2}

\frac{ek}{2}\cdot \frac{1}{s^2}  \ \textgreater \  \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \  \frac{ek\cdot \:1}{2s^2} \ \textgreater \  \mathrm{Apply\:rule}\:1\cdot \:a=a
\frac{ek}{2s^2}

\frac{k}{2}\cdot \frac{1}{s^2} \ \textgreater \  \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \  \frac{k\cdot \:1}{2s^2} \ \textgreater \  \mathrm{Apply\:rule}\:1\cdot \:a=a
\frac{k}{2s^2}

\frac{ek}{2s^2}+\frac{e}{2s}-\frac{k}{2s^2}

Hope this helps!
3 0
4 years ago
Find the terminal point on the unit circle determined by pi radians.
svet-max [94.6K]

Answer:

Terminal points

(x,y) = (\frac{1}{\sqrt{2} }) , (\frac{-1}{\sqrt{2} })

Step-by-step explanation:

According to the question, it is provided that

\theta = \frac{7\pi}{4}

Now

x = 1. cos (\frac{7\pi}{4})\\\\ = cos (2\pi - \frac{\pi}{4})\\\\= cos \frac{\pi}{4} \\\\= \frac{1}{\sqrt{2} }

y = 1. sin (\frac{7\pi}{4})\\\\ = sin (2\pi - \frac{\pi}{4})\\\\= -sin \frac{\pi}{4} \\\\= \frac{-1}{\sqrt{2} }

Now

(x,y) = (\frac{1}{\sqrt{2} }) , (\frac{-1}{\sqrt{2} })

These two represents the terminal points

We simply applied the above equations and then equate these two equations to determine the terminal points and therefore the same is to be considered

It could be figure out by using the x and y points

Therefore the two shows the terminal points

3 0
3 years ago
Other questions:
  • A box contains 5 red balls and 8 white balls. In how many ways can we choose 6 balls, 3 of which are white?
    11·1 answer
  • Solve. -7x=x^2+12 help
    13·1 answer
  • If (2a+3b)=2 what is the value of (2a-3b)
    14·1 answer
  • Four students are competing in a spelling bee. The top three students will receive a medal. How many different ways can they fin
    13·2 answers
  • How is a rational number that is not an integer different from a rational number that is an integer?
    7·2 answers
  • 2 questions in the 2 pictures and then im done thank you
    10·1 answer
  • FAST PLSSSSS
    14·2 answers
  • Is the sequence 7, 9, 12, 16 geometric
    13·1 answer
  • After Lynda's initial client assessment, she has noted that her client will require inventory management to avoid out-of-stock s
    15·1 answer
  • PLEASE PLEASEE ANSWER THE QUESTION IN THE PICTURE BELOW
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!