Answer:
The mean number of adults who would have bank savings accounts is 32.
Step-by-step explanation:
For each adult surveyed, there are only two possible outcomes. Either they have bank savings accounts, or they do not. So we use the binomial probability distribution to solve this problem.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The expected value of the binomial distribution is:

In this problem, we have that:

If we were to survey 50 randomly selected adults, find the mean number of adults who would have bank savings accounts.
This is E(X) when
.
So

The mean number of adults who would have bank savings accounts is 32.
Answer:
1.103,1.13,1.1322,1.4
Step-by-step explanation:
find the decimal places and u can figure out with they are greater than this decimal or less
X + x - 5 + 3x + 25 = 180
5x + 20 = 180
5x = 160
x = 32
m<F = x - 5
m<F = 32 - 5
m<F = 27
What’s the question tho lol
To simplify the function, we need to know some basic identities involving exponents.
1. b^(ax)=(b^x)^a=(b^a)^x
2. b^(x/d) = (b^x)^(1/d) = ((b^(1/d)^x)
Now simplify f(x), where
f(x)=(1/3)*(81)^(3*x/4)
=(1/3)(3^4)^(3*x/4) [ 81=3^4 ]
=(1/3)(3^(4*3*x/4) [ rule 1 above ]
=(1/3) (3^(3*x)
=(1/3)(3^(3x)) [ or (1/3)(27^x), by rule 1 ]
(A) Initial value is the value of the function when x=0, i.e.
initial value
= f(0)
=(1/3)(3^(3x))
=(1/3)(3^(3*0))
=(1/3)(3^0)
=(1/3)(1)
=1/3
(B) the simplified base base is 3 (or 27 if the other form is used)
(C) The domain for an exponential function is all real values ( - ∞ , + ∞ ).
(D) The range of an exponential function with a positive coefficient and without vertical shift is ( 0, + ∞ ).