1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olenka [21]
3 years ago
13

Given: ∠BCD ≅ ∠EDC and ∠BDC ≅ ∠ECD Prove: Δ BCD ≅ Δ EDC

Mathematics
1 answer:
never [62]3 years ago
3 0
It would be bisecting angles
You might be interested in
Wren and Jenni are reading the same book. Wren is on page 12 and reads 4 pages every night. Jenni is on page 4 and reads 5 pages
sergejj [24]
Night 1-
               Wren 12
               Jenni 4
Night 2-
               Wren 16
               Jenni 9
Night 3-
               Wren 20
               Jenni 14
Night 4-
               Wren 24
               Jenni 19
Night 5-
               Wren 28
               Jenni 24
Night 6-
               Wren 32
               Jenni 29
Night 7-
               Wren 36
               Jenni 34
Night 8-
               Wren 40
               Jenni 39
Night 9-
               Wren 44
               Jenni 44
It would be 9 nights.
Graph using (x) and (y), Wren being (x) and Jenni being (y)
3 0
3 years ago
What is the Range and Mean?
velikii [3]

Answer:

Range:35

Mean:27.6

Step-by-step explanation:

Range is the highest number minus the smallest number 40-5=35

Mean is adding up all the numbers,then divide by how many numbers there are 414 divided by 15

3 0
3 years ago
Read 2 more answers
Let X denote the amount of time a book on two-hour reserve is actually checked out, and suppose the cdf is the following. F(x) =
Troyanec [42]

Answer:

a) P (x <= 3 ) = 0.36

b) P ( 2.5 <= x <= 3  ) = 0.11

c) P (x > 3.5 ) = 1 - 0.49 = 0.51

d) x = 3.5355

e) f(x) = x / 12.5

f) E(X) = 3.3333

g) Var (X) = 13.8891  , s.d (X) = 3.7268

h) E[h(X)] = 2500

Step-by-step explanation:

Given:

The cdf is as follows:

                           F(x) = 0                  x < 0

                           F(x) = (x^2 / 25)     0 < x < 5

                           F(x) = 1                   x > 5

Find:

(a) Calculate P(X ≤ 3).

(b) Calculate P(2.5 ≤ X ≤ 3).

(c) Calculate P(X > 3.5).

(d) What is the median checkout duration ? [solve 0.5 = F()].

(e) Obtain the density function f(x). f(x) = F '(x) =

(f) Calculate E(X).

(g) Calculate V(X) and σx. V(X) = σx =

(h) If the borrower is charged an amount h(X) = X2 when checkout duration is X, compute the expected charge E[h(X)].

Solution:

a) Evaluate the cdf given with the limits 0 < x < 3.

So, P (x <= 3 ) = (x^2 / 25) | 0 to 3

     P (x <= 3 ) = (3^2 / 25)  - 0

     P (x <= 3 ) = 0.36

b) Evaluate the cdf given with the limits 2.5 < x < 3.

So, P ( 2.5 <= x <= 3 ) = (x^2 / 25) | 2.5 to 3

     P ( 2.5 <= x <= 3  ) = (3^2 / 25)  - (2.5^2 / 25)

     P ( 2.5 <= x <= 3  ) = 0.36 - 0.25 = 0.11

c) Evaluate the cdf given with the limits x > 3.5

So, P (x > 3.5 ) = 1 - P (x <= 3.5 )

     P (x > 3.5 ) = 1 - (3.5^2 / 25)  - 0

     P (x > 3.5 ) = 1 - 0.49 = 0.51

d) The median checkout for the duration that is 50% of the probability:

So, P( x < a ) = 0.5

      (x^2 / 25) = 0.5

       x^2 = 12.5

      x = 3.5355

e) The probability density function can be evaluated by taking the derivative of the cdf as follows:

       pdf f(x) = d(F(x)) / dx = x / 12.5

f) The expected value of X can be evaluated by the following formula from limits - ∞ to +∞:

         E(X) = integral ( x . f(x)).dx          limits: - ∞ to +∞

         E(X) = integral ( x^2 / 12.5)    

         E(X) = x^3 / 37.5                    limits: 0 to 5

         E(X) = 5^3 / 37.5 = 3.3333

g) The variance of X can be evaluated by the following formula from limits - ∞ to +∞:

         Var(X) = integral ( x^2 . f(x)).dx - (E(X))^2          limits: - ∞ to +∞

         Var(X) = integral ( x^3 / 12.5).dx - (E(X))^2    

         Var(X) = x^4 / 50 | - (3.3333)^2                         limits: 0 to 5

         Var(X) = 5^4 / 50 - (3.3333)^2 = 13.8891

         s.d(X) = sqrt (Var(X)) = sqrt (13.8891) = 3.7268

h) Find the expected charge E[h(X)] , where h(X) is given by:

          h(x) = (f(x))^2 = x^2 / 156.25

  The expected value of h(X) can be evaluated by the following formula from limits - ∞ to +∞:

         E(h(X))) = integral ( x . h(x) ).dx          limits: - ∞ to +∞

         E(h(X))) = integral ( x^3 / 156.25)    

         E(h(X))) = x^4 / 156.25                       limits: 0 to 25

         E(h(X))) = 25^4 / 156.25 = 2500

8 0
3 years ago
Is the answer a b c please help
satela [25.4K]

Answer:

B, you were right

Step-by-step explanation:

15*5=75

1125/75=15

8 0
3 years ago
Cual es el resultado?
Korolek [52]
I hope this helps you


x^2/3 [x^2/3.x^-1/4)^6.1/3.2


x^2/3[x^8-3/12]^4


x^2/3 [x^5/12]^4


x^2/3.x^5/12.4


x^2/3.x^5/3


x^2+5/3


x^7/3
5 0
3 years ago
Other questions:
  • Combine the like to simplify the expression: -5y + 12 + 8y − 6 − 2 =
    12·2 answers
  • 1 _______=5,280 feet
    8·1 answer
  • Calculate the probability of landing at most 1 head when a 0.6-biased coin is tossed
    6·1 answer
  • Given the initial point (2, 3), which other three points would make an isosceles trapezoid on the coordinate plane?
    13·1 answer
  • 3(x+3)-5x simplify<br> Answer
    8·2 answers
  • Find the measure of
    15·2 answers
  • Which number is composite? 11,2,9,5​
    5·2 answers
  • Evaluate the expressions below for the given values!
    6·1 answer
  • Assuming there are no reflections or dilations explain how you would write the equation of the function whose graph is sketched
    12·1 answer
  • Which polynomial function gets larger and larger in the negative direction as x gets
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!