Using the binomial distribution, it is found that there is a:
a) 0.9298 = 92.98% probability that at least 8 of them passed.
b) 0.0001 = 0.01% probability that fewer than 5 passed.
For each student, there are only two possible outcomes, either they passed, or they did not pass. The probability of a student passing is independent of any other student, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial probability distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 90% of the students passed, hence
.
- The professor randomly selected 10 exams, hence
.
Item a:
The probability is:

In which:




Then:

0.9298 = 92.98% probability that at least 8 of them passed.
Item b:
The probability is:

Using the binomial formula, as in item a, to find each probability, then adding them, it is found that:

Hence:
0.0001 = 0.01% probability that fewer than 5 passed.
You can learn more about the the binomial distribution at brainly.com/question/24863377
Width is 70 because 310-30=280
280/4=70
Answer:
corresponding sides are congruent, as well as alt. int and alt. exterior angles.
Step-by-step explanation:
Answer:
El total de líquido utilizado es
. Se echa
de litro más de leche que de jugo
Step-by-step explanation:
Para saber la cantidad total de líquido, basta con sumar las cantidades de leche y de jugo de naranja. Vamos a asumir que usa 1/3 de litro de jugo de naranja.
En este caso el total de líquido es 1/2 litro + 1/3 litro. Dado que estas fracciones tienen distinta denominador, debemos sumarlas de la siguiente manera

Para calcular la cantidad extra de leche de más que la cantidad de jugo, restamos estos números. Es decir

Es decir, que echamos
de litro más de leche que de jugo.
The divisor is 4.033 because it divides 198,200. Rounded to the nearest whole number, it is 4 because 0 is less than 5, so the next highest (whole) place is unchanged.