Answer:
Electron transfer to from cytochrome c to molecular Oxygen in the process of oxidative phosphorylation
Explanation:
Cytochrome c is a protein which is involved in the electron transport chain for the production of ATP molecules during then process of respiration. It a soluble protein found in the intermembrane space of the mitochondria. It receives electrons from ubiquinone at Complex III of the electron transport chain and transfers this electron to molecular oxygen through its interaction with complex IV or cytochrome c oxidase, reducing molecular oxygen to water.
If the interaction of cytochrome c with cytochrome c oxidase is inhibited, the process of elctron transfer to oxygen will be inhibited and, so ATP synthesis will cease.
Ultimately, respiration will be inhibited resulting in death of the organism. For example, cyanide inhibits cytochrome c oxidase resulting in death of the organism poisoned with cyanide.
Answer:
The chromosomes move to a narrow central zone of the cell
Explanation:
Prophase: nuclear and cell membrane start to disappear
Metaphase: The chromosomes line up in the equator
Anaphase: Spindle fibres pull the chromosomes towards the poles
Telophase: Nuclear and cell membrane start to form
I hope it useful
Answer:
150 - 300 bp
Explanation:
Micrococcal nuclease, indistinctly from the time of treatment and in average organisms, will realize the cuts on DNA o RNA zones rich in AT or AU. It is not a specific endonuclease.
Even so, the mean size of the expected fragments will have between 150 bp and 300 bp.
It is very important to run your digestion along with a proper label.
Answer:
- Glycine
- Ribulose 1,5-bisphosphate
- 3-phosphoglycerate
- Glyceraldehyde 3-phosphate.
- Glucose
- Sucrose
Explanation:
The glycine, among other amino acids, helps to improve chlorophyll production and promotes the process of photosynthesis.
<u>Calvin cycle</u>
During the carbon fixation phase, a CO² molecule combinate with a ribulose 1,5-bisphosphate to form 6-carbonated molecules, which will divide into two 3-phosphoglycerate molecules.
During the reduction phase, NADPH donates its electrons to reduce 3-phosphoglycerate molecules, and turn them into glyceraldehyde 3-phosphate.
During the regeneration phase, a glyceraldehyde 3-phosphate molecule leaves the cycle and goes to the cytosol to form glucose. This step can be done when three CO² enter the cycle and produce six glyceraldehyde 3-phosphate molecules. One of them leaves the cycle to form glucose, while the other five are recycled.
<u>Cytosol: </u>
Once in the cytosol, glyceraldehyde 3-phosphate molecules are used to form glucose and fructose. These two molecules are the monosaccharides that form the sucrose.
Once sucrose is formed, it is transported from the photosynthetic tissues to different parts of the plant by the phloem.