Answer:
6.02 x 10²³ electrons
Explanation:
Given parameters:
Mass of H₂ = 2g
Unknown:
Number of electrons = ?
Solution:
To find the number of electrons, we must determine the number of moles of H₂ first.
Number of moles =
Molar mass of H₂ = 2(1) = 2g/mol
Number of moles =
= 1mol
1 mole of a substance contains 6.02 x 10²³ particles
the particles can be protons, neutrons, electrons
So,
2g of H₂ will contain 6.02 x 10²³ electrons.
If you have a concern about fluoride in your drinking water, you can get more information by contacting the local community water system and is denoted as option D.
<h3>What is Water?</h3>
This is referred to as a universal solvent and is usually colorless and used for various purposes such as drinking, washing etc.
Fluoride is added to water by the the community water system as it helkps to build strong teeth and cavities thereby preventing tooth decay. They know the concentration which is added to the water which is why they need to be contacted for more information.
Read more about Water here brainly.com/question/5060579
#SPJ1
Answer:
V₂ =279.4 cm³
Explanation:
Given data:
Initial volume = 260 cm³
Initial temperature = 22.0°C
Final temperature = 44.0°C
Final volume = ?
Solution;
22.0°C (22+ 273 = 295k)
44.0°C(44+273 = 317k)
Formula:
According to Charles's law
V₁/T₁ = V₂/T₂
Now we will put the values in formula:
V₂ = V₁×T₂ / T₁
V₂ = 260 cm³ × 317k / 295k
V₂ = 82420 cm³. k / 295k
V₂ =279.4 cm³
Answer:
During Glycolysis, there is one step where NADH + H+ is formed from NAD+ O F-6-P - F- 1,6-BP O PGAL – 1,3-BPGA O 2-PGA - PEP O 3-PGA → 2-PGA.
The question is missing a part, so the complete question is as follows:
The protein catalase catalyzes the reaction The Malcolm Bladrigde National Quality Awards aims to: 2H2O2 (aq) ⟶ 2H2O (l) + O2 (g) and has a Michaelis-Menten constant of KM = 25mM and a turnover number of 4.0 × 10 7 s -1. The total enzyme concentration is 0.012 μM and the intial substrate concentration is 5.14 μM. Catalase has a single active site. Calculate the value of Rmax (often written as Vmax) for this enzyme. Calculate the initial rate, R (often written as V0), of this reaction.
1) Calculate Rmax
The turnover number (Kcat) is a ratio of how many molecules of substrate can be converted into product per catalytic site of a given concentration of enzyme per unit of time:
Kcat =
,
where:
Vmax is maximum rate of reaction when all the enzyme sites are saturated with substrate
Et is total enzyme concentration or concentration of total enzyme catalytic sites.
Calculating:
Kcat = 
Vmax = Kcat · Et
Vmax = 4×
· 1.2 × 
Vmax = 4.8 ×
M
2) Calculate the initial rate of this reaction (R):
The Michaelis-Menten equation studies the dynamics of an enzymatic reaction. This model can explain how an enzyme enhances the rate of a reaction and how the reaction rate depends on the concentration of the enzyme and its substrate. The equation is:
V0 =
, where:
[S] is the substrate's concentration
KM is the Michaelis-Menten constant
Substituting [S] = 5.14 ×
, KM = 2.5 ×
and Vmax = 4.8 ×
, the result is V0 = 0.478 M.
The answers are Vmax = 4.8 ×
M and V0 = 0.478 M.