Answer:
p = -3
Step-by-step explanation:
Apply algebra to the equation by subtracting 4 from each side, that way it will cancel out at least the 4 next to p. It should now look like this: p = -3
Because we can't make anymore moves and the expression clearly states what p is, we're done!
Answer:
P=0.228
Step-by-step explanation:
We know that from a faculty of six professors, six associate professors, ten assistant professors, and twelve instructors, a committee of size six is to be selected.
Therefore, we have 34 people.
We calculate the number of possible combinations:

Of the 6 professors we choose 2, and of the other 28 people we choose 4.
We calculate the number of favorable combinations:

Therefore, the probability is:

Here's the equation for direct variation. k=y/x [ f(x)=y]
Find k
k= 48/8=6
6=y/2
y=12
Hope this helps.
so we have three points, A, B and C, if indeed AC is the diameter of the circle, then half the distance of AC is its radius, and the midpoint of AC is the center of the circle, morever, since B is also on the circle, the distance from B to the center must be the same radius distance.
in short, half the distance of AC must be equals to the distance of B to the midpoint of AC, if indeed AC is the diameter.

now, let's check the distance from say A to the center, and check the distance of B to the center, if it's indeed the center, they'll be the same and thus AC its diameter.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{7}~,~\stackrel{y_1}{4})\qquad M(\stackrel{x_2}{\frac{19}{2}}~,~\stackrel{y_2}{\frac{7}{2}})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AM=\sqrt{\left( \frac{19}{2}-7 \right)^2+\left( \frac{7}{2}-4 \right)^2} \\\\\\ AM=\sqrt{\left( \frac{5}{2}\right)^2+\left( -\frac{1}{2} \right)^2}\implies \boxed{AM\approx 2.549509756796392} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B7%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B%5Cfrac%7B19%7D%7B2%7D%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B7%7D%7B2%7D%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D-7%20%5Cright%29%5E2%2B%5Cleft%28%20%5Cfrac%7B7%7D%7B2%7D-4%20%5Cright%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AM%3D%5Csqrt%7B%5Cleft%28%20%5Cfrac%7B5%7D%7B2%7D%5Cright%29%5E2%2B%5Cleft%28%20-%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%7D%5Cimplies%20%5Cboxed%7BAM%5Capprox%202.549509756796392%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
∠ Q ≈ 53.1°
Step-by-step explanation:
cos Q =
=
=
, then
∠ Q =
(
) ≈ 53.1° ( to the nearest tenth )