Answer:
We start with the equation:
A: 3*(x + 2) = 18
And we want to construct equation B:
B: X + 2 = 18
where I suppose that X is different than x.
Because in both equations the right side is the same thing, then the left side also should be the same thing, this means that:
3*(x + 2) = X + 2
Now we can isolate the variable x.
(x + 2) = (X + 2)/3
x = (X + 2)/3 - 2
Then we need to replace x by (X + 2)/3 - 2 in equation A, and we will get equation B.
Let's do it:
A: 3*(x + 2) = 18
Now we can replace x by = (X + 2)/3 - 2
3*( (X + 2)/3 - 2 + 2) = 18
3*( (X + 2)/3 ) = 18
3*(X + 2)/3 = 18
(X + 2) = 18
Which is equation B.
Answer:
y = -4/3 x - 1/3
Step-by-step explanation:
y = -4/3 x + b
5 = -4/3 (-4) + b
15 = 16 + 3b
b = -1/3
y = -4/3 x - 1/3
Answer: Binomial distribution
Step-by-step explanation:
The binomial appropriation is a likelihood circulation that sums up the probability that a worth will take one of two free qualities under a given arrangement of boundaries or suspicions. The hidden suspicions of the binomial dispersion are that there is just a single result for every preliminary, that every preliminary has a similar likelihood of achievement, and that every preliminary is totally unrelated, or autonomous of one another.
Answer:
31.5cm²
Step-by-step explanation:
area of a triangle =1/2 b h
b= 7cm
h=9cm
1/2×7×9
= 1/2×63
= 31.5cm²
hypotenuse is unknown so,
c²=a²+b²
c²= 7² + 9²
= 49 + 81
c²= 130
c= 11.4cm
perimeter= 7 +9+11.4
=27.4cm
pls note that no unit was stated
Answer:
The domain of function
is set of all real numbers.
Domain: (-∞,∞)
Step-by-step explanation:
Given:


the domain of both the above functions is all real number.
To find domain of :

Substituting functions
and
to find 

The product can be written as difference of squares. ![[a^2-b^2=(a+b)(a-b)]](https://tex.z-dn.net/?f=%5Ba%5E2-b%5E2%3D%28a%2Bb%29%28a-b%29%5D)
∴ 
The degree of the function
is 2 as the exponent of leading term
is 2. Thus its a quadratic equation.
For any quadratic equation the domain is set of all real numbers.
So Domain of
is (-∞,∞)