Answer:
(0,-26,-8) and (0,-12,-1)
Step-by-step explanation:
a(t) = (v(t))
⇒ =
Integration of a vector is simultaneous integration of each of its components:
⇒v(t) - v(0) = (2t, -6t, -4t)
⇒v(t) = (2t-5, -6t+1, -4t+3)
v(t) = (r(t))
⇒ =
r(t) - r(0) = (-5t, -3+t, -2+3t)
⇒r(t) = (-5t+6, -3+t-2, -2+3t+1)
when the particle intersects the yz plane, it's x-coordinate is 0
⇒-5t+6=0
⇒-2t-3t+6=0
⇒t·(t-2)-3·(t-2)=0
⇒(t-2)·(t-3)=0
∴Particle hits the yz plane at t=2 and t=3.
r(2) = (-5·2+6, -3·+2-2, -2·+3·2+1)
<u>r(2) = (0,-12,-1)</u>
r(3) = (-5·3+6, -3·+3-2, -2·+3·3+1)
<u>r(3) = (0,-26,-8)</u>
x(2) = x(3) =0
y(3) = -26 is less than -12 = y(2)
∴The two intersection points with yz plane are (0,-26,-8) and (0,-12,-1)