Answer:
The length of diagonal d is 14.1421 cm
Step-by-step explanation:
We are given square
Length of side of square = 10 cm
We need to find the length of diagonal d
To find diagonal of square, the formula used is:

where s is length of side of square.
Putting values of s and finding length of diagonal of square

So, The length of diagonal d is 14.1421 cm
If we know that the WHOLE angle added is 105 and only part is 75 you need to subtract the whole angle and subtract from part of the whole angle.
105-75=30. You get 30 And that’s you answer!
Picture to help with your understanding.
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
<h3>How to determine the maximum height of the ball</h3>
Herein we have a <em>quadratic</em> equation that models the height of a ball in time and the <em>maximum</em> height represents the vertex of the parabola, hence we must use the <em>quadratic</em> formula for the following expression:
- 4.8 · t² + 19.9 · t + (55.3 - h) = 0
The height of the ball is a maximum when the discriminant is equal to zero:
19.9² - 4 · (- 4.8) · (55.3 - h) = 0
396.01 + 19.2 · (55.3 - h) = 0
19.2 · (55.3 - h) = -396.01
55.3 - h = -20.626
h = 55.3 + 20.626
h = 75.926 m
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
To learn more on quadratic equations: brainly.com/question/17177510
#SPJ1
The inverse, converse and contrapositive of a statement are used to determine the true values of the statement
<h3>How to determine the inverse, converse and contrapositive</h3>
As a general rule, we have:
If a conditional statement is: If p , then q .
Then:
- Inverse -> If not p , then not q .
- Converse -> If q , then p .
- Contrapositive -> If not q , then not p .
Using the above rule, we have:
<u>Statement 1</u>
- Inverse: If a parallelogram does not have a right angle, then it is not a rectangle.
- Converse: If a parallelogram is a rectangle, then it has a right angle.
- Contrapositive: If a parallelogram is a not rectangle, then it does not have a right angle.
All three statements above are true
<u>Statement 2</u>
- Inverse: If two angles of one triangle are not congruent to two angles of another, then the third angles are not congruent.
- Converse: If the third angles of two triangle are congruent, then the two angles are congruent to two angles of another
- Contrapositive: If the third angles of two triangle are not congruent, then the two angles are not congruent to two angles of another
All three statements above are also true
Read more about conditional statements at:
brainly.com/question/11073037
Leaf #2 because 27 and 23 are closest to 30