Answer:
The atomic mass of element is 65.5 amu.
Explanation:
Given data:
Abundance of X-63 = 50.000%
Atomic mass of X-63 = 63.00 amu
Atomic mass of X-68 = 68.00 amu
Atomic mass of element = ?
Solution:
Abundance of X-68 = 100-50 = 50%
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (50×63)+(50×68) /100
Average atomic mass = 3150 + 3400 / 100
Average atomic mass = 6550 / 100
Average atomic mass = 65.5 amu.
The atomic mass of element is 65.5 amu.
1 mol = 6.02 * 10^23 atoms of carbon
x mol = 1.45 * 10^24 atoms of carbon
1/x =6.02*10^23 / 1.45 * 10^24
6.02 * 10^23 x = 1.45 * 10^24
x = 1.45 * 10^24 / 6.02 * 10^23
x = 2.41 mols of carbon
The reason why Br has a greater magnitude of electron affinity than that of I is that there is a greater attraction between an added electron and the nucleus in Br than in I.
In the periodic table, there are trends that increase down the group and across the period. Electron affinity is a trend that increases across the period but decreases down the group.
Recall that the ability of an atom to accept an electron depends on the size of the atom. The smaller the atom, the greater the attraction between an added electron and the nucleus.
Since Br is smaller than I, there is a greater attraction between an added electron and the nucleus in Br than in I which explains why Br has a greater magnitude of electron affinity than I.
Learn more: brainly.com/question/17696329