Answer:
6x-y-4=0 is the linear coordinates.
Step-by-step explanation:
hope this helps.
Answer:
therefore x = 600 mph
therefore the speed of the other plane y = x - 110 = 600 - 110 = 490 mph
Step-by-step explanation:
i) Two planes are 2725 miles apart and are travelling towards each other.
ii) One plane is travelling 110 mph faster than the other plane.
iii) the planes pass each other in 2.5 hours
iv) let the speed of one plane be x mph
v) let the speed of another plane be y mph
vi) therefore x - y = 110 mph
vii) and also x + y = 2725/2.5 = 1090
viii) adding the equation in vi) to the equation in vii) we get 2x = 1200
therefore x = 600 mph
ix) therefore the speed of the other plane y = x - 110 = 600 - 110 = 490 mph
Answer:
Given points ( -1 ,3 ) and slope(m) = -3
Step-by-step explanation:
<em>The </em><em>equation </em><em>of </em><em>a </em><em>line </em><em>is </em><em>given </em><em>by </em>
<em>y </em><em>-</em><em> </em><em>y1 </em><em>=</em><em> </em><em>m </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>x1</em><em> </em><em>)</em>
<em>y </em><em>-</em><em> </em><em>3</em><em> </em><em>=</em><em> </em><em>-</em><em>3</em><em> </em><em>(</em><em> </em><em>x </em><em>+</em><em>1</em><em> </em><em>)</em>
<em>y </em><em>-</em><em> </em><em>3</em><em> </em><em>=</em><em> </em><em>-</em><em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>3</em>
<em>3x </em><em>+</em><em> </em><em>y </em><em>-</em><em>3</em><em> </em><em>+</em><em>3</em><em> </em><em>=</em><em>0</em>
<em>3x </em><em>+</em><em> </em><em>y </em><em>=</em><em> </em><em>0</em>
<em>which </em><em>is </em><em>the </em><em>required </em><em>equation </em>
Answer:
8 + 2x = 30
Step-by-step explanation:
Given,
The initial number of push-ups he does in each day = 8,
And, the number of push-ups, he increases per day = 2,
Let x be the number of days after he will reach his target of 30 push-ups,
Since, the number of push-ups she will increase in x days = 2x,
Thus, the number of push-ups she will do after x days = 8 + 2x,
⇒ 8 + 2x = 30, which is the required equation.