]Eigenvectors are found by the equation

implying that

. We then can write:
And:
Gives us the characteristic polynomial:

So, solving for each eigenvector subspace:
![\left [ \begin{array}{cc} 4 & 2 \\ 5 & 1 \end{array} \right ] \left [ \begin{array}{c} x \\ y \end{array} \right ] = \left [ \begin{array}{c} -x \\ -y \end{array} \right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%204%20%26%202%20%5C%5C%205%20%26%201%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20x%20%5C%5C%20y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%3D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20-x%20%5C%5C%20-y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20)
Gives us the system of equations:
Producing the subspace along the line

We can see then that 3 is the answer.
Answer:
3r^3/y^7.
Step-by-step explanation:
9y^-5 / 3y^2r^-3
9 / 3 = 3
y ^-5 / y^2 = y^-7 = 1 / 7y
1 / r^-3 = r^3
So the answer is 3r^3/y^7.
The measure of a supplement of an angel is 6 times the measurement of the complement angle.
Answer:
Move all terms to the left side and set equal to zero. Then set each factor equal to zero.
x=5,−2
Step-by-step explanation:
I can do math
Y = -3x + b
Plug in points
4 = -3(-2) + b
4 = 6 + b, b = -2
Solution: y = -3x - 2