Answer:
d
Step-by-step explanation:
Answer:
160
Step-by-step explanation:
72/45 = 1.6
1.6 * 45 = 72
Background information
160/100 = 1.6 (100 for percents)
160 fits the answer so it is right
HOPE THIS HELPS
PLZZ MARK BRAINLIEST
Answer: P = 2x + 2y + 10
Step-by-step explanation: The perimeter (P) of a rectangle is given as
P = 2L + 2W
By factorizing the right hand side of the equation we now have
P = 2(L + W)
However, the length of the rectangle is given as x + 6 and the width is given as y - 1
If P = 2(L + W), then
P = 2(x + 6 + {y - 1} )
P = 2(x + 6 + y -1)
P = 2(x + y + 5)
After expanding the bracket, we now have
P = 2x + 2y + 10
<h3>
Answer:</h3>
- using y = x, the error is about 0.1812
- using y = (x -π/4 +1)/√2, the error is about 0.02620
<h3>
Step-by-step explanation:</h3>
The actual value of sin(π/3) is (√3)/2 ≈ 0.86602540.
If the sine function is approximated by y=x (no error at x = 0), then the error at x=π/3 is ...
... x -sin(x) @ x=π/3
... π/3 -(√3)/2 ≈ 0.18117215 ≈ 0.1812
You know right away this is a bad approximation, because the approximate value is π/3 ≈ 1.04719755, a value greater than 1. The range of the sine function is [-1, 1] so there will be no values greater than 1.
___
If the sine function is approximated by y=(x+1-π/4)/√2 (no error at x=π/4), then the error at x=π/3 is ...
... (x+1-π/4)/√2 -sin(x) @ x=π/3
... (π/12 +1)/√2 -(√3)/2 ≈ 0.026201500 ≈ 0.02620

<u>the </u><u>given </u><u>figure </u><u>is </u><u>a </u><u>composition</u><u> </u><u>of </u><u>a </u><u>rectangle</u><u> </u><u>as </u><u>well </u><u>as </u><u>a </u><u>right </u><u>angled </u><u>triangle </u><u>!</u>
<u>we've</u><u> </u><u>been </u><u>given </u><u>the </u><u>two </u><u>sides </u><u>of </u><u>the </u><u>rectangle </u><u>and </u><u>we're</u><u> </u><u>required</u><u> </u><u>to </u><u>find </u><u>out </u><u>the </u><u>height </u><u>of </u><u>the </u><u>triangle </u><u>,</u><u> </u><u>so </u><u>as </u><u>to </u><u>find </u><u>it's</u><u> </u><u>area </u><u>~</u>
<u>we </u><u>know </u><u>the </u><u>the </u><u>opposite</u><u> </u><u>sides </u><u>of </u><u>a </u><u>rectangle </u><u>are </u><u>equal</u><u> </u><u>,</u><u> </u><u>therefore </u><u>we </u><u>can </u><u>break </u><u>the </u><u>longest </u><u>side </u><u>(</u><u> </u><u>length </u><u>=</u><u> </u><u>9</u><u>.</u><u>5</u><u> </u><u>cm </u><u>)</u><u> </u><u>into </u><u>two </u><u>parts </u><u>!</u><u> </u><u>the </u><u>first </u><u>part </u><u>of </u><u>length </u><u>=</u><u> </u><u>7</u><u> </u><u>cm </u><u>which </u><u>is </u><u>the </u><u>length </u><u>of </u><u>the </u><u>rectangle </u><u>and </u><u>the </u><u>rest </u><u>2</u><u>.</u><u>5</u><u> </u><u>cm </u><u>(</u><u> </u><u>9</u><u>.</u><u>5</u><u> </u><u>-</u><u> </u><u>7</u><u> </u><u>=</u><u> </u><u>2</u><u>.</u><u>5</u><u> </u><u>)</u><u> </u><u>will </u><u>become </u><u>the </u><u>height </u><u>of </u><u>the </u><u>triangle </u><u>!</u>
<h3><u>For </u><u>perimeter</u><u> </u><u>of </u><u>the </u><u>figure </u><u>-</u></h3>

now ,
<u>perimeter</u><u> </u><u>of </u><u>rectangle </u><u>=</u><u> </u><u>2</u><u> </u><u>(</u><u> </u><u>l </u><u>+</u><u> </u><u>b </u><u>)</u>
where ,
<u>l </u><u>=</u><u> </u><u>length </u>
<u>b </u><u>=</u><u> </u><u>breadth </u>

and ,

<u>Perimeter</u><u> </u><u>of </u><u>figure </u><u>in </u><u>total </u><u>=</u><u> </u><u>2</u><u>6</u><u> </u><u>cm </u><u>+</u><u> </u><u>1</u><u>5</u><u> </u><u>cm</u>
thus ,

<h3><u>For </u><u>area </u><u>of </u><u>the </u><u>figure </u><u>-</u></h3>

now ,
<u>area </u><u>of </u><u>rectangle</u><u> </u><u>=</u><u> </u><u>l </u><u>×</u><u> </u><u>b</u>
where ,
<u>l </u><u>=</u><u> </u><u>length </u>
<u>b </u><u>=</u><u> </u><u>breadth</u>

and ,

<u>Area </u><u>of </u><u>figure</u><u> </u><u>in </u><u>total </u><u>=</u><u> </u><u>4</u><u>2</u><u> </u><u>cm²</u><u> </u><u>+</u><u> </u><u>7</u><u>.</u><u>5</u><u> </u><u>cm²</u>
thus ,

hope helpful :)