1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
3 years ago
11

Describe the interaction with the sun and producers

Physics
1 answer:
bagirrra123 [75]3 years ago
4 0

Answer: the sun's rays is one of the raw Materials recquired by plants to make food

Explanation:plants trap light used in splitting water into hydrogen ions and oxygen molecules

You might be interested in
Imagine that a tank is filled with water. The height of the liquid column is 7 meters and the area is 1.5 square meters (m2). Wh
Crazy boy [7]

Answer:

B. 102,900 N

I remember this question from one of my, test. Really hope this helps..

5 0
3 years ago
Read 2 more answers
An aluminum cup of mass 150 g contains 800 g of water in thermal equilibrium at 80.0°C. The combination of cup and water is cool
gladu [14]

Answer:

Heat Flow Rate : ( About ) 87 W

Explanation:

The heat flowing out of the system each minute, will be represented by the following equation,

Q( cup ) + Q( water ) = m( cup ) * c( al ) * ΔT + m( w ) * c( w ) * ΔT

So as you can see, the mass of the aluminum cup is 150 grams. For convenience, let us convert that into kilograms,

150 grams = .15 kilograms - respectively let us convert the mass of water to kilograms,

800 grams = .8 kilograms

Now remember that the specific heat of aluminum is 900 J / kg * K, and the specific heat of water = 4186 J / kg * K. Therefore let us solve for " the heat flowing out of the system per minute, "

Q( cup ) + Q( water ) = .15 * ( 900 J / kg * K )  * 1.5 + .8 * ( 4186 J / kg * K ) * 1.5,

Q( cup ) + Q( water ) = 5225.7 Joules

And the heat flow rate should be Joules per minute,

5225.7 Joules / 60 seconds = ( About ) 87 W

5 0
3 years ago
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
What is the length a rubberband was stretched if it has a spring constant of 5700N/m and is currently holding 8600J OF POTENTIAL
lozanna [386]

Answer:

\displaystyle \Delta x=1.74\ m

Explanation:

<u>Elastic Potential Energy </u>

Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

\displaystyle PE = \frac{1}{2}k(\Delta x)^2

Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.

Solving for Δx:

\displaystyle \Delta x=\swrt{\frac{2PE}{k}}

Substituting:

\displaystyle \Delta x=\sqrt{\frac{2*8600}{5700}}

Calculating:

\displaystyle \Delta x=\sqrt{3.0175}

\boxed{\displaystyle \Delta x=1.74\ m}

6 0
3 years ago
An experiment is designed to test what color of light will activate a photoelectric cell the best. The photocell is set in a cir
chubhunter [2.5K]
The photocell<span>-- The click rate depends upon the filter selected.</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Which two energy sources can help a star maintain its internal thermal pressure? which two energy sources can help a star mainta
    7·2 answers
  • What is the name of a very porous igneous rock that is so light that it floats?
    14·1 answer
  • A carbon rod with a radius of 2.1 mm is used to make a resistor. The resistivity of this material is 3.2 × 10−5 Ω · m. What leng
    11·1 answer
  • From the top of a tall building, you throw one ball straight up with speed v0 and one ball straight down with speed v0. (a) Whic
    8·1 answer
  • What is the total mass of chlorine
    7·1 answer
  • Scientific fact can never change<br><br> 1)True<br> 2)False
    9·2 answers
  • The first charged object is exerting a force on the second charged object. Is the second charged object necessarily exerting a f
    15·1 answer
  • The si unit of mass is the Newton. True or false.
    15·1 answer
  • explain why using a parabolic mirror for a car headlight throws much more light on the highway than a flat mirror.
    9·1 answer
  • Uranium-235 Fission
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!