Answer:
Step-by-step explanation:
We will use 2 coordinates from the table along with the standard form for an exponential function to write the equation that models that data. The standard form for an exponential function is
where x and y are coordinates from the table, a is the initial value, and b is the growth/decay rate. I will use the first 2 coordinates from the table: (0, 3) and (1, 1.5)
Solving first for a:
. Sine anything in the world raised to a power of 0 is 1, we can determine that
a = 3. Using that value along with the x and y from the second coordinate I chose, I can then solve for b:
. Since b to the first is just b:
1.5 = 3b so
b = .5
Filling in our model:

Since the value for b is greater than 0 but less than 1 (in other words a fraction smaller than 1), this table represents a decay function.
Answer:
Your answer would be Phoenix. Phoenix had a temperature of 8 degrees.
Step-by-step explanation:
Amy: (3 pages/min)(x min) + 9 pages
Sam: (2 pages/min)(x min) + 47 pages
Equate these: 3x+9 = 2x + 47
Then x = 38. The two friends will have covered the same number of pages after 38 minutes. How many pages would that be? 3(38)+9 = 123 pages.
Divide 141 by 73
73 only goes into 141 once
Answer:

Step-by-step explanation:
The satellite has 30 modular units.
There are equal numbers of non-upgraded sensors in each unit.
Let us assume that on the entire satellite there are x numbers of upgraded sensors.
Then as per the given condition, there are
number of non-upgraded sensors in one unit.
Therefore, the number of non-upgraded sensors on the entire satellite is
=6x
Hence, total number of sensors in the satellite is (x+ 6x) =7x
Therefore, the required fraction of the upgraded sensors is
. (Answer)