If you would like to calculate the arithmetic mean, geometric mean, and harmonic mean from the following averages, you can calculate this using the following steps:
averages: 56.4, 59.8, 55.8
the number of values: 3
arithmetic mean:
(56.4 + 59.8 + 55.8) / 3 = 57.33
geometric mean:
(56.4 * 59.8 * 55.8)^(1/3) = 57.31
harmonic mean:
3 / (1/56.4 + 1/59.8 + 1/55.8) = 57.28
Your answer is d Its on the fourth quadrant! that Is really easy!
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → C = π - (A + B)
→ sin C = sin(π - (A + B)) cos C = sin(π - (A + B))
→ sin C = sin (A + B) cos C = - cos(A + B)
Use the following Sum to Product Identity:
sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]
cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]
Use the following Double Angle Identity:
sin 2A = 2 sin A · cos A
<u>Proof LHS → RHS</u>
LHS: (sin 2A + sin 2B) + sin 2C




![\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%202%5Csin%20C%5Ccdot%20%5B%5Ccos%20%28A-B%29%2B%5Ccos%20%28A%2BB%29%5D)


LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C 