Answer/Explanation: On Mercury temperatures can get as hot as 430 degrees Celsius during the day and as cold as -180 degrees Celsius at night.
Mercury is the planet in our solar system that sits closest to the sun. The distance between Mercury and the sun ranges from 46 million kilometers to 69.8 million kilometers. The earth sits at a comfy 150 million kilometers. This is one reason why it gets so hot on Mercury during the day.
The other reason is that Mercury has a very thin and unstable atmosphere. At a size about a third of the earth and with a mass (what we on earth see as ‘weight’) that is 0.05 times as much as the earth, Mercury just doesn’t have the gravity to keep gases trapped around it, creating an atmosphere. Due to the high temperature, solar winds, and the low gravity (about a third of earth’s gravity), gases keep escaping the planet, quite literally just blowing away.
Atmospheres can trap heat, that’s why it can still be nice and warm at night here on earth.
Mercury’s atmosphere is too thin, unstable and close to the sun to make any notable difference in the temperature.
Space is cold. Space is very cold. So cold in fact, that it can almost reach absolute zero, the point where molecules stop moving (and they always move). In space, the coldest temperature you can get is 2.7 Kelvin, about -270 degrees Celsius.
Sunlight reflected from other planets and moons, gases that move through space, the very thin atmosphere and the surface of Mercury itself are the main reasons that temperatures on Mercury don’t get lower than about -180 °C at night.
Answer:
provide protection against pathogens
Explanation:
May occur in oceans is a type of transforms boundary is a region where earthquakes occur
80%
hope this helps.
my sister is called pria too lol :)
Answer:
Muscle contraction function.
Explanation:
The nerve endings possess synaptic acetylcholine vesicles ready to be released. The action potential depolarizes the presynaptic terminal and increases the concentration of axoplasmic calcium; Acetylcholine molecules are thus released, so that the concentration of the neurotransmitter at postsynaptic (nicotinic) receptors is temporarily increased. This is followed by post-synaptic membrane depolarization, muscle membrane action potential with increased rnioplasmic calcium concentration, and finally muscle contraction. Acetylcholine is hydrolyzed by acetylcholinesterase and resynaptic at the presynaptic level by cholinecetyltransferase. The etiopathogenesis of myasthenia gravis is autoimmune and there are antibodies against acetylcholine receptors that circulate in the blood, as well as a decrease in the number of receptors on the motor plates, that is, it is produced by the postsynaptic blockage of the myoneural plaque, that generates fatigue and localized or generalized muscle weakness that is characterized by the worsening of the contractile force of the muscle.