Solutions
1) <span>Subtract </span><span>7/8</span><span> </span><span>from both sides
</span><span><span>x=4−<span>7/8
</span></span></span>2) <span>Simplify</span><span> </span><span>4−7/8</span><span> </span><span>to</span><span> </span><span>25/8
</span><span><span>x=<span>25/8</span></span></span>
m < DAB + m < ADC = 180 (because ABCD is a parallelogram)
so m < ADC = 180 -112 = 68 degrees
Therefore m < ADB = 68 - 27 = 41 degrees (answer)
Answer:
you should count how many time two or more line touches each other
Part A) Find BC, the distance from Tower 2 to the plane, to the nearest foot.
in the triangle ACD
sin16=CD/(7600+BD)--------> CD=sin16*(7600+BD)---------> equation 1
in the triangle BCD
sin24=CD/BD-----------> CD=sin24*BD---------------> equation 2
equation 1=equation 2
sin16*(7600+BD)=sin24*BD-----> sin16*7600+sin16*BD=sin24*BD
sin24*BD-sin16*BD=sin16*7600----> BD=[sin16*7600]/[sin24-sin16]
BD=15979 ft
in the triangle BCD
cos24=BD/BC---------> BC=BD/cos24-------> 15979/cos24-------> 17491
BC=17491 ft
the answer part 1) BC is 17491 ft
Part 2) Find CD, the height of the plane from the ground, to the nearest foot.
CD=sin24*BD ( remember equation 2)
BD=15979 ft
CD=sin24*15979 -----------> CD=6499 ft
the answer part 2) CD is 6499 ft