1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MA_775_DIABLO [31]
3 years ago
12

Line M is represented by the following equation x - y = 8 which equation completes the system that is Satisfied by the solution

(18,10
Mathematics
1 answer:
oee [108]3 years ago
6 0

Line M is represented by the following equation x - y = 8. Therefore, it is the equation equation completes the system that is Satisfied by the solution (18,10.

You might be interested in
4. Elena va a una fiesta pero no sabe que ponerse, así que lanza un moneda y un dado al
taurus [48]

Answer:

  • <u>1/4</u>

Explanation:

Hola. Puesto que tu pregunta está en español, te responderé en el mismo lenguage.

Estas son las posibilidades dadas por la combinación moneda/dado

                                      Número de combinaciones

Moneda: prenda

    Cara: vestido                 1 de 2:          1/2

     Sello: falda                    1 de 2:          1/2

Dado: color

    Par: negro                      3 de 6:          3/6

    Impar: café                     3 de 6:         3/6

En total son 2 × 6 resultados: 12 (incluye resultados repetidos, no son todos diferentes entre sí)

¿Cuántas combinaciones tienen vestido y color negro?

  • P(Vestido∩negro) = ?

Es decir: moneda = cara y dado = par

  • Son 1 × 3 = 3.

Por tanto, la probabilidad de vestido negro es:

  • 3 de 12 = 3/12 = 1/4 ← respuesta

Hay otras formas de resolverlo. Por ejemplo;

Como los resultados de lanzar la moneda y el dado son independientes:

  • P(Vestido∩negro) = P(Vestido) × P(Negro)
  • P(Vestido) = 1/2
  • P(Negro) = 3/6 = 1/2
  • P(Vestido) × P(Negro) = 1/2 × 1/2 = 1/4 ← mismo resultado
8 0
4 years ago
Last summer, Gary trained 32 more dogs and than Zina. Together they trained 126 dogs. How many dogs did Gary train?
dmitriy555 [2]
Gary trained 79 dogs Total
5 0
4 years ago
ANSWER QUICKLY PLEASE AND THANK YOU!!!
nydimaria [60]

Answer:

2,3

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Factor 15(2z+1)^3+10(2z+1)^2-25(2z+1)
ELEN [110]
15(2z+1)^3+10(2z+1)^2-25(2z+1)\\\\subtitute\ x=2z+1\\\\15t^3+10t^2-25t=5t\cdot3t^2+5t\cdot2t-5t\cdot5=5t(3t^2+2t-5)\\\\=5t(3t^2-3t+5t-5)=5t[3t(t-1)+5(t-1)]\\\\=5t(t-1)(3t+5)\\\\=5(2z+1)(2z+1-1)[3(2z+1)+5]\\\\=5(2z+1)(2z)(6z+3+5)=5(2z)(2z+1)(6z+8)\\\\=10z(2z+1)(6z+8)=10z(2z+1)(2)(3z+4)\\\\=\boxed{20z(2z+1)(3z+4)}
4 0
4 years ago
Problem 2.
myrzilka [38]

Answer:

a) "An example proves P" False

b) True

c) False

d) True

e) False

f) False

g) True

Step-by-step explanation:

a) If we want to prove P, we have to verify that for all z, P(z) is true. Then, an example is not enough to prove P, it could happen that P(x) is false for some x that is not an example. To elaborate, denote the set of real numbers of R, and define P(z):="z is positive", for z∈R. An example is z=2. However, P(z) is not true in general, a counterexample is z=-1.

If you take P as a proposition, you have to decide the truth value of P, and it must be the same for all possible values of z. In this case, examples and counterexamples can be used sometimes to determine whether P is true or false. We apply this idea below.

b) This is true. Every integer is either even or odd because when you divide by 2, you always get a remainder of 0 (then the integer is even) or 1 (then the integer is odd).

c) This is false. It is not true that every integer is even, a counterexample is the integer 3. Then the proposition "Every integer is even" is false. Similarly, the proposition "Every integer is odd" is false (2 is a counterexample). Both propositions are false, thus the compound proposition is false.

d) This is true. An example is enough: rake r=2. r is rational, and real. Thus some (just one is enough) rational numbers are real.

e) This is false. A counterexample proves this: take z=1+i. z is not imaginary because its real part (1) is not zero. Also, z is not real (i≠0) so not all complex numbers are real or imaginary.

f) False. This would imply that for all real numbers y, y<x. In particular with y=x+1, x+1<x hence 1<0, which is a contradiction.

g) True. Given y∈R, take x=y+1. Then y<x=y+1 as required.

8 0
3 years ago
Other questions:
  • How do you solve for h? <br> Having trouble with #45
    7·1 answer
  • Solve the equation for t
    8·1 answer
  • 2x + y = 12<br> 4x - 3y = 2
    15·1 answer
  • If R represents the third vertex in the triangle and R is located in the third quadrant, what is the length of PR?
    10·2 answers
  • Can i please get some help on this one ASAP!
    11·1 answer
  • PLEASE HELP ILL GIVE YOU THE REST OF MY POINTS AND BRAINLIEST
    15·2 answers
  • Can someone do this for me? ​
    10·2 answers
  • I need some help please
    12·1 answer
  • 4. g(x) = x-252<br> Identify the zeros of the function
    14·1 answer
  • A girl has 7 skirts, 9 blouses, and 4 pairs of shoes. How many different skirt-blouse-shoe outfits can she wear
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!