Answer:
domain: x>3/5
Step-by-step explanation:
First we need to derive our function g(x) to get a new function g'(x)
To do this we will have to apply chain rule because we have an inner and outer functions.
Our G(x) = square root(3-5x)
Chain rule formula states that: d/dx(g(f(x)) = g'(f(x))f'(x)
where d/dx(g(f(x)) = g'(x)
g(x) is the outer function which is x^1/2
f(x) is our inner function which is 3-5x
therefore f'(x)= 1/2x^(-1/2) and f'(x) = -5
g'(f(x)) = -1/2(3-5x)^(-1/2)
Applying chain rule then g'(x) = 1/2 (3-5x)^(-/1/2)*(-5)
But the domain is the values of x where the function g'(x) is not defined
In this case it will be 3-5x > 0, because 3-5x is a denominator and anything divide by zero is infinity/undefined
which gives us x >3/5
Answer:
Step-by-step explanation:
The type I error occurs when the researchers rejects the null hypothesis when it is actually true.
The type II error occurs when the researchers fails to reject the null hypothesis when it is not true.
Null hypothesis: The proportion of people who write with their left hand is equal to 0.23: p =0.23
Type I error would be: Fail to reject the claim that the proportion of people who write with their left hand is 0.29 when the proportion is actually different from 0.29
Since 0.29 is assumed to be the alternative claim.
Type II error would be: Reject the claim that the proportion of people who write with their left hand is 0.29 when the proportion is actually 0.29
Still with the assumption that 0.29 is the alternative claim.
Answer:
2.306
Step-by-step explanation:
u while times the number