Point I is on line segment HJ. Given I J equals 3X +3, HI equals 3X-1, and HJ equals 3X +8, determine the numerical length of HJ
2 answers:
Answer:
Step-by-step explanation:
3x + 3 + 3x - 1 = 3x + 8
6x + 2 = 3x + 8
3x + 2 = 8
3x = 6
x = 2
HJ= 3(2) + 8 =6 + 8 = 14
HI= 3(2) - 1 = 6 - 1 = 5
IJ = 3(2) + 3 = 6 + 3 = 9
Answer:14
Step-by-step explanation:
3x + 3 + 3x - 1 = 3x + 8
6x + 2 = 3x + 8
3x + 2 = 8
3x = 6
x = 2
HJ= 3(2) + 8 =6 + 8 = 14
HI= 3(2) - 1 = 6 - 1 = 5
IJ = 3(2) + 3 = 6 + 3 = 9
You might be interested in
Answer:
I have attached the answers below and how i got the answers :)
Hope this helps!
35492.4217263 < THATS THE ANSWER
Cos35= y/15
y= 15cos35
y= 12.3 cm
Answer:
D, 49.42
Step-by-step explanation:
ΔVFT=180-90-43=47
formula
a/sin A = b/sin B/ = c/sin C
So,
FV/sin90=53/sin47
FV=72.4684
FT=√(72.4684)^2-(53)^2
FT=49.4234
Ans:D
2x + 5 = 11
2x = 6
x = 3
y + 4 = 2x + 4
y + 4 = 2(3) + 4
y + 4 = 10
y = 6
answer
x = 3 and y = 6