Answer:
g(x) = (x + 2)^2 + 1
Step-by-step explanation:
From the graph/image that you have provided said translated shift of
f(x) -> g(x)
f(x) = x^2 , g(x) = a(x -h)^2 +k
h is shift right/left
k is shift up/down.
It appears that the shift is left 2 and up 1.
h = -2 and k = 1
g(x) = (x - (-2))^2 +1
g(x) = (x + 2)^2 + 1
Answer:
the second one
Step-by-step explanation:
When subtracting a negative, the negative turns to a positive, so in this case, -14- -8 would be the same as -14 + 8
CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®.
Copyright © 2014 CK-12 Foundation, www.ck12.org
The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws.
Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms.
Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
Answer:
(344*20) + ( 2*20) = (20*2) = ?
Step-by-step explanation:
Answer:
A solution is said to be extraneous, if it is a zero of the equation, but it does not satisfy the equation,when substituted in the original equation,L.H.S≠R.H.S.
The given equation consisting of variable , m is
![\frac{2 m}{2 m+3} -\frac{2 m}{2 m-3}=1\\\\ 2 m[\frac{1}{2 m+3} -\frac{1}{2 m-3}]=1\\\\ 2 m\times \frac{[2 m-3 -2 m- 3]}{4m^2-9}=1\\\\ -6 \times 2 m=4 m^2 -9\\\\ 4 m^2 +1 2 m -9=0\\\\m=\frac{-12 \pm\sqrt{12^2-4 \times 4 \times (-9)}}{2\times 4}\\\\m=\frac{-12 \pm \sqrt {144+144}}{8}\\\\m=\frac{-12 \pm \sqrt {288}}{8}\\\\m=\frac{-12 \pm 12 \sqrt{2}}{8}\\\\m=\frac{3}{2}\times(-1 \pm \sqrt{2})](https://tex.z-dn.net/?f=%5Cfrac%7B2%20m%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B2%20m%7D%7B2%20m-3%7D%3D1%5C%5C%5C%5C%202%20m%5B%5Cfrac%7B1%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B1%7D%7B2%20m-3%7D%5D%3D1%5C%5C%5C%5C%202%20m%5Ctimes%20%5Cfrac%7B%5B2%20m-3%20-2%20m-%203%5D%7D%7B4m%5E2-9%7D%3D1%5C%5C%5C%5C%20-6%20%5Ctimes%202%20m%3D4%20m%5E2%20-9%5C%5C%5C%5C%204%20m%5E2%20%2B1%202%20m%20-9%3D0%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%5Csqrt%7B12%5E2-4%20%5Ctimes%204%20%5Ctimes%20%28-9%29%7D%7D%7B2%5Ctimes%204%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B144%2B144%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B288%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%2012%20%5Csqrt%7B2%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B3%7D%7B2%7D%5Ctimes%28-1%20%5Cpm%20%5Csqrt%7B2%7D%29)
None of the two solution
, is extraneous.
Here, L.H.S= R.H.S
Option A: 0→ extraneous