So.. if we take the numerator to be say "a", then the denominator will be "a+3"

either of those two fractions will do
Answer:144
Step-by-step explanation:
Answer:
substitute that value for x in the polynomial and see if it evaluates to zero
Step-by-step explanation:
A "zero" of a polynomial is a value of the polynomial's variable that make the expression become zero when it is evaluated. As an almost trivial example, consider the polynomial x-3. The value x = 3 is a zero because substituting that value for x makes the expression evaluate as zero.
3 -3 = 0
___
Evaluating polynomials can be done different ways. Straight substitution for the variable is one way. Using synthetic division by x-a (where "a" is the value of interest) is another way. This latter method is completely equivalent to rewriting the polynomial to Horner form for evaluation.
__
In the attachment, Horner Form is shown at the bottom.
Confusing question but I would get 0, as if you have 4cm, that squared = 16cm^2. Therefore if it were increasing anymore, then you would not be able to get a value of 16.
The normal vector to the plane <em>x</em> + 3<em>y</em> + <em>z</em> = 5 is <em>n</em> = (1, 3, 1). The line we want is parallel to this normal vector.
Scale this normal vector by any real number <em>t</em> to get the equation of the line through the point (1, 3, 1) and the origin, then translate it by the vector (1, 0, 6) to get the equation of the line we want:
(1, 0, 6) + (1, 3, 1)<em>t</em> = (1 + <em>t</em>, 3<em>t</em>, 6 + <em>t</em>)
This is the vector equation; getting the parametric form is just a matter of delineating
<em>x</em>(<em>t</em>) = 1 + <em>t</em>
<em>y</em>(<em>t</em>) = 3<em>t</em>
<em>z</em>(<em>t</em>) = 6 + <em>t</em>