so, let's keep in mind that

so let's make a quick table of those solutions, say A, B, C solutions with x,y,z liters of acid, with an acidity of 0.25, 0.40 and 0.60 respectively.

we know she's using "z" liters and those are 3 times as much as "y" liters, so z = 3y.
![\bf \begin{cases} x+y+3y=78\\ x+4y=78\\[-0.5em] \hrulefill\\ 0.25x+0.4y+0.6(3y)=35.1\\ 0.25x+0.4y=1.8y=35.1\\ 0.25x+2.2y=35.1 \end{cases}\implies \begin{cases} x+4y=78\\\\ 0.25x+2.2y=35.1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ x+4y=78\implies \boxed{x}=78-4y \\\\\\ \stackrel{\textit{using substitution on the 2nd equation}}{0.25\left( \boxed{78-4y} \right)+2.2y=35.1}\implies 19.5-y+2.2y=35.1](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%2By%2B3y%3D78%5C%5C%20x%2B4y%3D78%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%200.25x%2B0.4y%2B0.6%283y%29%3D35.1%5C%5C%200.25x%2B0.4y%3D1.8y%3D35.1%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20x%2B4y%3D78%5C%5C%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20x%2B4y%3D78%5Cimplies%20%5Cboxed%7Bx%7D%3D78-4y%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20substitution%20on%20the%202nd%20equation%7D%7D%7B0.25%5Cleft%28%20%5Cboxed%7B78-4y%7D%20%5Cright%29%2B2.2y%3D35.1%7D%5Cimplies%2019.5-y%2B2.2y%3D35.1)
![\bf 1.2y=15.6\implies y=\cfrac{15.6}{1.2}\implies \blacktriangleright y=13 \blacktriangleleft \\\\\\ x=78-4y\implies x=78-4(13)\implies \blacktriangleright x=26 \blacktriangleleft \\\\\\ z=3y\implies z=3(13)\implies \blacktriangleright z=39 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{25\%}{26}\qquad \stackrel{40\%}{13}\qquad \stackrel{60\%}{39}~\hfill](https://tex.z-dn.net/?f=%5Cbf%201.2y%3D15.6%5Cimplies%20y%3D%5Ccfrac%7B15.6%7D%7B1.2%7D%5Cimplies%20%5Cblacktriangleright%20y%3D13%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20x%3D78-4y%5Cimplies%20x%3D78-4%2813%29%5Cimplies%20%5Cblacktriangleright%20x%3D26%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20z%3D3y%5Cimplies%20z%3D3%2813%29%5Cimplies%20%5Cblacktriangleright%20z%3D39%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B25%5C%25%7D%7B26%7D%5Cqquad%20%5Cstackrel%7B40%5C%25%7D%7B13%7D%5Cqquad%20%5Cstackrel%7B60%5C%25%7D%7B39%7D~%5Chfill)
Answer:
Option (3)
Step-by-step explanation:
Area of a circle is given by the formula,
Area = πr²
Here, r = radius of the circle
Since, radius of the circular trampoline = 8 feet
Area of the cover required for the circular trampoline = π(8)²
= 64π square feet
Therefore, Option (3) will be the answer.
Answer:
116−−√
110−−√
14√
18√
Step-by-step explanation:
Answer:
(a)![E[X+Y]=E[X]+E[Y]](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D)
(b)
Step-by-step explanation:
Let X and Y be discrete random variables and E(X) and Var(X) are the Expected Values and Variance of X respectively.
(a)We want to show that E[X + Y ] = E[X] + E[Y ].
When we have two random variables instead of one, we consider their joint distribution function.
For a function f(X,Y) of discrete variables X and Y, we can define
![E[f(X,Y)]=\sum_{x,y}f(x,y)\cdot P(X=x, Y=y).](https://tex.z-dn.net/?f=E%5Bf%28X%2CY%29%5D%3D%5Csum_%7Bx%2Cy%7Df%28x%2Cy%29%5Ccdot%20P%28X%3Dx%2C%20Y%3Dy%29.)
Since f(X,Y)=X+Y
![E[X+Y]=\sum_{x,y}(x+y)P(X=x,Y=y)\\=\sum_{x,y}xP(X=x,Y=y)+\sum_{x,y}yP(X=x,Y=y).](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3D%5Csum_%7Bx%2Cy%7D%28x%2By%29P%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%2B%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29.)
Let us look at the first of these sums.
![\sum_{x,y}xP(X=x,Y=y)\\=\sum_{x}x\sum_{y}P(X=x,Y=y)\\\text{Taking Marginal distribution of x}\\=\sum_{x}xP(X=x)=E[X].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%7Dx%5Csum_%7By%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20x%7D%5C%5C%3D%5Csum_%7Bx%7DxP%28X%3Dx%29%3DE%5BX%5D.)
Similarly,
![\sum_{x,y}yP(X=x,Y=y)\\=\sum_{y}y\sum_{x}P(X=x,Y=y)\\\text{Taking Marginal distribution of y}\\=\sum_{y}yP(Y=y)=E[Y].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7By%7Dy%5Csum_%7Bx%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20y%7D%5C%5C%3D%5Csum_%7By%7DyP%28Y%3Dy%29%3DE%5BY%5D.)
Combining these two gives the formula:

Therefore:
![E[X+Y]=E[X]+E[Y] \text{ as required.}](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D%20%5Ctext%7B%20%20as%20required.%7D)
(b)We want to show that if X and Y are independent random variables, then:

By definition of Variance, we have that:
![Var(X+Y)=E(X+Y-E[X+Y]^2)](https://tex.z-dn.net/?f=Var%28X%2BY%29%3DE%28X%2BY-E%5BX%2BY%5D%5E2%29)
![=E[(X-\mu_X +Y- \mu_Y)^2]\\=E[(X-\mu_X)^2 +(Y- \mu_Y)^2+2(X-\mu_X)(Y- \mu_Y)]\\$Since we have shown that expectation is linear$\\=E(X-\mu_X)^2 +E(Y- \mu_Y)^2+2E(X-\mu_X)(Y- \mu_Y)]\\=E[(X-E(X)]^2 +E[Y- E(Y)]^2+2Cov (X,Y)](https://tex.z-dn.net/?f=%3DE%5B%28X-%5Cmu_X%20%20%2BY-%20%5Cmu_Y%29%5E2%5D%5C%5C%3DE%5B%28X-%5Cmu_X%29%5E2%20%20%2B%28Y-%20%5Cmu_Y%29%5E2%2B2%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%24Since%20we%20have%20shown%20that%20expectation%20is%20linear%24%5C%5C%3DE%28X-%5Cmu_X%29%5E2%20%20%2BE%28Y-%20%5Cmu_Y%29%5E2%2B2E%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%3DE%5B%28X-E%28X%29%5D%5E2%20%20%2BE%5BY-%20E%28Y%29%5D%5E2%2B2Cov%20%28X%2CY%29)
Since X and Y are independent, Cov(X,Y)=0

Therefore as required:

Answer:
Step-by-step explanation:
Given that,
y=x+2 equation 1
2x-y=-4 equation 2
This is a simultaneous equation.
Substitute equation 1 into equation 2
2x-y=-4. Since y=x+2
2x-(x+2) = -4
2x-x-2 = -4
x-2 = -4
x = -4+2
x = -2
Also from equation 1
y=x+2
Since x=-2
y=-2+2
y=0
Then, solution (x, y) = (-2,0)