Answer:

Step-by-step explanation:
Step 1: Define
Difference Quotient: 
f(x) = -x² - 3x + 1
f(x + h) means that x = (x + h)
f(x) is just the normal function
Step 2: Find difference quotient
- <u>Substitute:</u>
![\frac{[-(x+h)^2-3(x+h)+1]-(-x^2-3x+1)}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%2Bh%29%5E2-3%28x%2Bh%29%2B1%5D-%28-x%5E2-3x%2B1%29%7D%7Bh%7D)
- <u>Expand and Distribute:</u>
![\frac{[-(x^2+2hx+h^2)-3x-3h+1]+x^2+3x-1}{h}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B-%28x%5E2%2B2hx%2Bh%5E2%29-3x-3h%2B1%5D%2Bx%5E2%2B3x-1%7D%7Bh%7D)
- <u>Distribute:</u>

- <u>Combine like terms:</u>

- <u>Factor out </u><em><u>h</u></em><u>:</u>

- <u>Simplify:</u>

3.43 look to the number to the right of the hundredths place. If it's higher than 5 round up.
Answer:
D
Step-by-step explanation:
whenever you see this ^ you now it's not linear equation
This is an infinite loop display
The nth term is
an=a1(r)^(n-1)
an=1(2)^(n-1)
a1=1
r=2
the sum of a geometric seequence is

a1=1
r=2
we want to find

(since we minus 1, the highest exponet is 9 so add 1 to make it correct)


