Answer:
Any line can be graphed using two points. Select two x x values, and plug them into the equation to find the corresponding y y values. Tap for more steps.
Step-by-step explanation:
Answer:
Step-by-step explanation:
A1. C = 104°, b = 16, c = 25
Law of Sines: B = arcsin[b·sinC/c} ≅ 38.4°
A = 180-C-B = 37.6°
Law of Sines: a = c·sinA/sinC ≅ 15.7
A2. B = 56°, b = 17, c = 14
Law of Sines: C = arcsin[c·sinB/b] ≅43.1°
A = 180-B-C = 80.9°
Law of Sines: a = b·sinA/sinB ≅ 20.2
B1. B = 116°, a = 11, c = 15
Law of Cosines: b = √(a² + c² - 2ac·cosB) = 22.2
A = arccos{(b²+c²-a²)/(2bc) ≅26.5°
C = 180-A-B = 37.5°
B2. a=18, b=29, c=30
Law of Cosines: A = arccos{(b²+c²-a²)/(2bc) ≅ 35.5°
Law of Cosines: B = arccos[(a²+c²-b²)/(2ac) = 69.2°
C = 180-A-B = 75.3°
Basically you are multiplying each thing by 5
1 stage 1
5 stage 2
25 stage 3
125 stage 4
625 stage 5
3125 stage 6
Answer:
No, it would be 72
Step-by-step explanation:
In similar triangles, the sides are different but the angles are the same. You still had a great guess though :)
Pls give brainliest
Cº b<span>. </span>Points<span> on the </span>x<span>-axis ( </span>Y. 0)-7<span> (6 </span>2C<span>) are mapped to </span>points<span>. --IN- on the </span>y<span>-axis. ... </span>Describe<span> the transformation: 'Reflect A ALT if A(-5,-1), L(-</span>3,-2), T(-3,2<span>) by the </span>rule<span> (</span>x<span>, </span>y) → (x<span> + </span>3<span>, </span>y<span> + </span>2<span>), then reflect over the </span>y-axis, (x,-1) → (−x,−y<span>). A </span>C-2. L (<span>0.0 tº CD + ... </span>translation<span> of (</span>x,y) → (x–4,y-3)? and moves from (3,-6) to (6,3<span>), by how.</span>