the answer is A because indont know 9bp
A) 2(1+2c)
2+4c = 2+4c
B) 6(14r-2t)
= 84r-12t
3x - 4 = <span>3(-3) - 4 = -9 - 4 = -13
</span>3x - 4 = <span>3(-1.4) - 4 = -4.2 - 4 = -8.2
answer
range { -13, -8.2}</span>
Using a discrete probability distribution, it is found that:
a) There is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
b) There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
c) The expected value is of 1.3 lawns mowed on a randomly selected day.
<h3>What is the discrete probability distribution?</h3>
Researching the problem on the internet, it is found that the distribution for the number of lawns mowed on a randomly selected dayis given by:
Item a:
P(X = 2) = 0.3, hence, there is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
Item b:

There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
Item c:
The expected value of a discrete distribution is given by the <u>sum of each value multiplied by it's respective probability</u>, hence:
E(X) = 0(0.2) + 1(0.4) + 2(0.3) + 3(0.1) = 1.3.
The expected value is of 1.3 lawns mowed on a randomly selected day.
More can be learned about discrete probability distributions at brainly.com/question/24855677
For part A: you will get 3 linear factors (as the degree of the polynomial is 3). perform the division using (x-1) as your known factor and you will get (x-1)(2x²+11x+15). you can then factor the (2x²+11x+15) to get 2x^3 + 9x^2 + 4x - 15 = (x-1)(2x+5)(x+3)
for part B: since 2x+5 will provide the greatest value (assuming x>0) of the 3 factors, then 2x+5=13. solve to get x=4. if x is 4, then the dimensions are 3'x13'x7' [just sub 4 into the x's for each factor]
for part C: as to the graphing calculator, I don't have one. However, if you solve each linear factor for when it is 0, those values will be the x-intercepts. So your graph should cross the x-asix at 1, -5/2, and -3