8 1/2 would be the answer to this question
The oldest cousin should be 10. If their ages are consecutive even whole numbers, then the younger cousins should be 2 & 4. 2+4=6+10=16
First simplify the one inequality, 6r + 30 greater than or equal to 12 just divide by 6 then subtract 30 from both sides of the inequality. You should get r is greater than or equal to -3. For this one you need to reverse the inequality symbol then divide both sides by -1 to get a positive r, and you get r is less than -12. It's not A because there's two solutions, and it's not D for the same reason. It's not C because r isn't greater than -12. In conclusion it's B because it correctly represents the solutions that make the inequality true. I hope this helps you on your high school application :)
Solve the following system:
{6 t - 5 s = -4 | (equation 1)
{-r - 4 s + 3 t = -4 | (equation 2)
{-2 r - 4 s - 4 t = -9 | (equation 3)
Swap equation 1 with equation 3:
{-(2 r) - 4 s - 4 t = -9 | (equation 1)
{-r - 4 s + 3 t = -4 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Subtract 1/2 × (equation 1) from equation 2:
{-(2 r) - 4 s - 4 t = -9 | (equation 1)
{0 r - 2 s + 5 t = 1/2 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Multiply equation 1 by -1:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 2 s + 5 t = 1/2 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Multiply equation 2 by 2:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 4 s + 10 t = 1 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Swap equation 2 with equation 3:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r - 4 s + 10 t = 1 | (equation 3)
Subtract 4/5 × (equation 2) from equation 3:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+(26 t)/5 = 21/5 | (equation 3)
Multiply equation 3 by 5:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+26 t = 21 | (equation 3)
Divide equation 3 by 26:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 6 × (equation 3) from equation 2:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s+0 t = (-115)/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Divide equation 2 by -5:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 4 × (equation 2) from equation 1:
{2 r + 0 s+4 t = 25/13 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 4 × (equation 3) from equation 1:
{2 r+0 s+0 t = (-17)/13 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Divide equation 1 by 2:
{r+0 s+0 t = (-17)/26 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
v0 r+0 s+t = 21/26 | (equation 3)
Collect results:Answer: {r = -17/26
{s = 23/13 {t = 21/26
Answer:
Step-by-step explanation:
A. The first inequality is graphed as a shaded area below the solid line with x-and y-intercepts of 7.5 and 5, respectively. The second inequality is graphed as a shaded area above the solid line with x- and y-intercepts of 3.
The solution set is the set of integer-valued grid points one or between the lines.
__
B. The point (5, 1) is included in the solution area. Mathematically, it can be shown to satisfy the two inequalities:
2(5) +3(1) ≤ 15 ⇒ 13 ≤ 15 True
(5) +(1) ≥ 3 ⇒ 6 ≥ 3 True
__
C. The point (5, 1) is in the solution set. It means Michael can purchase 5 sandwiches and 1 hot lunch within his budget constraints. That will provide 6 meals, which is more than the minimum of 3 that he wants to provide.