If each linear dimension is scaled by a factor of 10, then the area is scaled by a factor of 100. This is because 10^2 = 10*10 = 100. Consider a 3x3 square with area of 9. If we scaled the square by a linear factor of 10 then it's now a 30x30 square with area 900. The ratio of those two areas is 900/9 = 100. This example shows how the area is 100 times larger.
Going back to the problem at hand, we have the initial surface area of 16 square inches. The box is scaled up so that each dimension is 10 times larger, so the new surface area is 100 times what it used to be
New surface area = 100*(old surface area)
new surface area = 100*16
new surface area = 1600
Final Answer: 1600 square inches
Answer:
16/25
Step-by-step explanation:
We just have to find the probability that the 8 non-defects are chosen.
1. Chance first defect is undetected: 8/10 = <em>4/5</em>
2. Chance second defect is undetected: <em>4/5</em>
3. Total probability': 4/5 * 4/5 = 16/25
Answer:
h(8q²-2q) = 56q² -10q
k(2q²+3q) = 16q² +31q
Step-by-step explanation:
1. Replace x in the function definition with the function's argument, then simplify.
h(x) = 7x +4q
h(8q² -2q) = 7(8q² -2q) +4q = 56q² -14q +4q = 56q² -10q
__
2. Same as the first problem.
k(x) = 8x +7q
k(2q² +3q) = 8(2q² +3q) +7q = 16q² +24q +7q = 16q² +31q
_____
Comment on the problem
In each case, the function definition says the function is not a function of q; it is only a function of x. It is h(x), not h(x, q). Thus the "q" in the function definition should be considered to be a literal not to be affected by any value x may have. It could be considered another way to write z, for example. In that case, the function would evaluate to ...
h(8q² -2q) = 56q² -14q +4z
and replacing q with some value (say, 2) would give 196+4z, a value that still has z as a separate entity.
In short, I believe the offered answers are misleading with respect to how you would treat function definitions in the real world.